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Abstract: In this study, we aim to put forward a novel nonmonotone algorithm of moving asymptotes for
solving n-variate unconstrained optimization problems. The algorithm first generates n separable subproblems
by virtue of the moving asymptotes function in each iteration to determine the descent search direction and
then obtain the step by new nonmonotone line search techniques. The global convergence of the proposed
algorithm 18 established in this study. In addition, we give some numerical tests, from which it is indicates that
the new algorithm 1s effective i solving multi-peak or large-scale optimization problems.
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INTRODUCTION

Consider the unconstrained optimization problem:

minf(x) (1)

xeR™

where, {(x) and the gradient g = Vi(x) are solvable. There
are numerous iterative approaches (Yuan, 2008) used to
solve Eq. 1, including the Method of Moving Asymptotes
(MMA) is effective in solving large-scale optimization
problems (Svanberg, 1987, Wang and Ni, 2008).

In 2012, Ping Hu introduced (Hu et al., 2012) a new
MMA by structuring the MMA subproblem:

min m(x*,8)=f(x" )+ D(s)st, o <5 <P,i=12--n (2)

where @(s) denotes the Moving Asymptotes (MA)
function of the form:

D) -3 465

With:
ka2
Kbl ) altef w)ie,
o(s,) = (‘b.k); (3)
K5, —ﬁ(gf -+ bi‘(gik - )iel

where, a and -b", are the upper and lower bounds of the
asymptotes and therefore —b"<s"<a’;:

(gf.gt) = vE(x*) =g )

k k i3 k
a; 21:Hg H+T]i, b; 21:Hg H+n‘

=0, n=0i=1,..n (5
L={ig=0}1 ={igi<i} (6)
-, = min{c,, c,b"}, B = minic,, o’} N

With ¢>0 and 0<c,<1. The strategy of selecting the
parameters involved in the subproblem Eq. 2 is presented
as follows.

Putm, = K(K=>1) if g& = 0 and:

1-c,

- ifgh + 0.
B:

,0.01)

T] =
¢ max(|

Take:
K = gf*U‘j.L,iEL
g +opn,icl
Where:
6,=——=% _and p=1.
o’ g+ mo

Corresponding Author: Ping Hu, Faculty of Mathematics and Physics, Huaiyin Institute of Technology,Huaian, 223003,

Jiangsu, China

4082



Inform. Technol. J., 12 (17): 4082-4088, 2013

In this MMA, the Eq. 1 can be reduced to be mind(s)
by approximating fix) via the function m(x* s) and
therefore, as a consequence, it 1s not difficult to obtain the
next search direction. Then, one can apply the line search
techniques to determine the length a* and thus get the
next iterative point as:

x = xigkst (8)

In Eq. 8, the length ¢* can be determined by some
traditional rules such as Arnmio rule, Goldstein rule,
Wolfe rule and so fort (Yuan, 2008). Each of these criteria
requires the precondition that the functions sequence
{f(x")} are monctonically decreasing that is:

)< (x5 )

Hence, the corresponding approach is called to be
nonmonotone line search technique.

Recent researches show that the convergence rate of
such monotone line search techniques reduce
considerably when the iteration locates in a narrow
curved valley (Sun et al, 2002, Yu and Pu, 2008,
Grippo et al., 1986). To overcome this problem, Grippo
introduced a highly innovative method called the
nonmonotone line search technique which does not
require the Eq. 9. Numerical tests illus trate that this
method 1s effective. Subsequently, it 1s developed by
many authors (Xao et al, 2009, Sun and Zhou, 2007,
Zhou and Sun, 2008).

In 2002, Sun put forward the so-called nonmonotone
F-rule which is a general nonmonotone line search
technique with the nonmontone Arimijo rule, the
nommonotone Goldstemn rule and the nonmonotone Wolfe
rule as its special cases. Nonmonotone F-rule requires
®">0 such that:

f(xk+otksk)£ max){f(xk")}—c(tk) (10)

0<igm (k

where, {m(k)} is an integer sequence satisfying the
followmg conditions:

m(0) = 0, O<m(k)<min{m(k-1)+1, M}
for some positive integer M, t°= -(g57S%[SY, 6:[0, +<]—[0,
+eo] 18 & foreing function which 1s defined as follows: For

any nonnegative sequence {t°}=[0, 4-]:

limt* =0
k—w

holds if:

lim (1) = 0

In 2008, Yu and Pu (2008) put forward an unproved
nonmonotene F-rule which requires «*>0 such that:

FxE) = F(x* + kst
(k-1 (1 1)
< max{f(x*), 37 A fEN-ol(th)

r=0

Where:

mik)-

E Ay =1

t=0

All other parameters are the same as that of Eq. 10.

Ttis seen from Eq. 10-11 that the inequality f{x*""y=f(x*)
may hold for some k and therefore it can play a
nonmonotone search role in the above rules. However, it
can also be easily concluded that fix"")<f(x")-s(t)=f(x")
which means f(x*)<f(x"). Arimijo rule possesses the similar
disadvantage. That is, x* will be trapped and cannot
escape when x° locates in a valley. In this case, it is
difficult to search other better points.

Motivated by the above analysis, we will make an
effort to improve MMA of (Hu et al., 2012) and the
nonmenotone F-rule of (Yu and Pu, 2008) and put forward
a novel algorithm by combimng the MMA and the
nonmonotone line search techniques. The new method
will be used to solve the Eq. 1 and presented in section 2.
In section 3, we will prove the convergence of the
proposed algorithm based on the works (Hu et al., 2012,
Sun et al., 2002; Yu and Pu, 2008; Hu and Ni, 2010).
Finally, some munerical tests will be made to illustrate the
main results. The rest of this study 15 orgamzed as above.

NONMONOTONE ALGORITHM OF
MOVING ASYMPTOTES

Algorithm of moving asymptotes for the search direction
S% We let a& = b5 in Eq. 5 in order to calculate and
programme simply. Then we can structure the MMA
subproblem:

min m(x",s) = £(x*) + O(s) (12)

st. o, <s <p,i=12--n

where, 5, = min{c,, ¢,a"}, other parameters are shown in
the first quarter.
From Egq. 3, we can be easily concluded that:
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b, =0
-+ f‘f)z _(gF—w).iel,
/(5= (a‘( ;;‘) (13)
a; . .
K+ (a}‘ +S‘)2 g/ —w), iel
2(3:()2 k_ :
) (af - si)B (g/ —w)iel,
)= O
-— 3(g:‘—rcj),iel_
(a; +s,)

According to the selection strategy of parameter k;,
we know if iel,, then k<g%. if iel, then x>g 5 And
because —a* <s"<a", therefore :

¢/ (s)>0 (14)

Thus, it can be ensure that the subproblem (12) is
strictly convex, so there i1s only one global optimal
solution S5, On the other hand, we can cobtain through
directly computing:

GO =g i=1,..n (13)

Therefore, the subproblem 1s the first approximation
of x* in the original problem.

Because MA function ¢(s) is separable, Eq. 12
becomes n separable dimensional constraint subproblems:

min ¢, (s;) (16)

st. P, <s <B,,i=1--,n

Lemma 1: The optimal solution of n Eq. 16 1s:

Sk=-Ag"hi=1,..,n (17
Where:
gﬂ if 6/(-p)2 0
A= %k if ¢, (B) <0 (18)
a3, —ake, .
— e if ¢i'(7Bi)>0and ¢i’(Bx)<0
]+ 4 G — 85
k k
51:{1, glzo,s‘:{o, gikZO (19)
0, g'<0 -1, g <0

Proof: From Eq. 14 $/(s;)>0, we know that ¢y(s)) is a
strictly convex function in when -by<s;<b,, So there is only
one optimal solution of Eq. 16.

If &/'(-B)=0, then ¢/'(-s)=0, when -[<s,;<[,. So, the
Minimum value of Eq. 16 1s to get at s, = -, If §/'(-p)<0

and ¢/'(-B,)<0, we know there is roots of ¢;/(S;) = 0 when
_Bigs1gﬁi'

From Hqg. 13, we can easily obtain the root S,
Therefore, we have Eq. 18 when § is substituted into
Eq. 17.

We can obtain the numerical solution directly for
Eq. 12 according to lemma 1. Tt shows that the solving
process is simplified through MA function approximation.
Therefore, this algorithm can be used to solve large-scale
problems.

Lemma 2: For any initial point x°, the level set is defined
as Q:{x eR®|f(x)< AT |f(x°)|,constant§k21,y >O}.

Assume {(x) is bounded and differentiable on € and
Vf(x) satisfies Lipschitz conditions on Q. Let 8* = (s,...,
s5)", where s"%(i=1,..., n) is defined as Eq. 17. If ||g"|= £>0,
then there 1s a constant €,>>0 which satisfies:

_(gk )T Sk (20)

5" -p
=&
=l

Proof: The proof can be completed according to lemma 4
in reference (Hu et al., 2012).

From Eq. 20, we have (g)"'S*<0 which explains that
the optimal solution S* of subproblem 12 is a Drop
direction of primitive function f(x) at x*. From Eq. 20, we
have:

*(gk)TSk

W zg ”gk”:c(ugkn) . k=012, (21)

Nonmonotone combination rule for line searches of
solving search step: In order to prove simply, we let:

m(k)
£, =£(x¥), o, = o(t5), £ = O A L)

Where:

(k)
> A=l Ay 2 B> 0,m(k) = min[k,M 1]

r=0

Integer M=1.
Nonmonotone combination rule for line searches 1s
that search step 2“0 is bounded and satisfies:

., = RS < 1y -0 (1) (22)

Where:

AMOF, =0
uk{ 1 Az1, h 20

i :
At £, <0
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i h, =v (y is a limited constant) (23)

k=0

o(t) is the F-function and t* = -(g")"8%||S5|20.

In Eq. 22, whenM =1, A = 1, we have fix+e's")
<f (x)-a(t), where 0(t) = e, p(-(g"S,) = e,p/S'] So,
combination rule becomes Arimijo rule.

If

fx")= Dsrgﬂ){f(xk”)} :

letA=1, A, =1, A, =01(r # p) then Eq. 22 becomes:

fx* +aks®) < DmEL:E{k){f()(k’J)} —a(t*)
Sitm

this is the nonmonotone algorithm put forward by
Grippo et al. (1986).

Nonmonotone algorithm of moving asymptotes for
solving Eq. 1 based on MA fimetion

Algorithm 1:
Step 1: Given initial iteration point x°, let k = 0.
According to Parameter selection strategy, we

select ¢, T, 1, K, €20, O<c,<1, A>1, integer M=1
and:

(k) =
> A.=l h. 20, 3 h, <y(yisalimited constant)
s =

Step 2: Compute g° according to Eq. 4. If [|g¥|<e and the
algorithm stops. Otherwise, the algorithm turn to
step 3

Compute search direction. Update the boundary
a% of moving asymptotes to satisfy Eq. 5,
Determine [, via., Eq. 7 to yield the sub-problem
Eq. 16 and then get the solution, saying S
based on Eq. 17

Step 4:  Ascertain line search step a”

Step 3:

Step 4.1: Select mitial value. Given pe(0, 1/2),
leta=1

Step 4.2: Check conditions. Let m(k) = min {k,
M-1%, p, satisfies FEg. 23, If
fix+asH) < p Lt pa(gh s, then
o¥ = &, turn to step 5. Otherwise, turn
tostep 4.3

Step 4.3: Shorten step. Let o = wo, we[0.01,
0.99], tun to step 4.2

Step 5: Let X! = x"+ask, k = k+1, turn to step 2
GLOBAL CONVERGENCE

Here, we will prove the global convergence of
nonmonotone algorithm of moving asymptotes.

Lemma 3: ., satisfies Eq. 23, obviously:

1s does not reduce the sequence about k and:

I K

T, T
ATZh A ap A% <A A k=012,

Theorem 1: If a, satisfies the combination rule Eq. 22,
ther:

3

ih,, by k-
M2 A B>o -0, k=12

i=o

(24)

f.< ‘fu

Proof: We will use mathematical mduction to prove this
theorem:

K

Notice: b,
O<A= =1,0<f=A, =1

For the case of k = 1.

IfM =1, then m(k) = 0, from Eq. 22, we have £ <1 A,
f-0, = wi-o,.

Because f, = yyhyf-0, = pyfi-0,, we have:

AT (J-lu f, *,Uu)’ o T by By -1y
Sha  -Tha
0'070'1£|f0‘?\.“'“ A Bo, -0

If M=1, from Eq. 22, we have:

fz £ “-1{7"1Df1+7‘11f0}*01 g|~l-1{7\'m (“-u fu *Gu)+?‘11fu}
-0 = Atopn (7"10 Jr7\'11 )|fu |* H?‘wcu -G

Zbn ~Xhy
£|fD At A Bo -0,

That 1s Eq. 24 holds for k= 1.
Let us now assume

f <[t

k-1 k-1
Th, -3, k2
A=A B 201 ~ O
i

Let us now assume:
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k-l

k-l
PIL NI
R D

i=n

£ <t

It follows that:

m(k)

fen <“’k27\'k1 ke Tk

=0

m(k) 5 71‘{7 1—
s akr[m AT B B"fo o J

m(k)

o, SAE Y Ay,

=0

k-1 k-1
- k-m(k)-2
[fu?"guhn —-i :\);Uhnﬁ Z g; - Uk—r—l}_ck

innm(k) ‘ihn Eemk)-2 \mek)
r 27"1“*7""'“ B[ GiJEAkr

mky 0 i=o =0

by,
—A Z?\'krck -1~ Oy

<|f,

k
b, (kemk)-2 (k)
=If, ?L“ —A= B G, ?L"*Ehk,ck” G,
=
k
Tk (Eom (e ST, m(k)
<lf, h“-“ A= p g |-A= B2 6., -0,
i=

G, |—0y
i=k- m(k) 1

This means that Eq. 24 holds.
Next, we will prove the global convergence of the
nenmonotone algorithm of moving asymptotes.

Theorem 2: Assume lemma 2 hold, the search direction $*
satisfies the algorithm of moving asymptotes, line search
length «* satisfies nonmonotone rule Eq. 22, {x% is
generale sequence, then {x*}eQ and lim g7 = 0.

Proof: From theorem 1 we have:

Aé 45 BZc—ck<N’|f|

i=o

k+1 ‘f

according to the definition of €, we know that {x*}e.
From Eq. 24 we have:

Ek"h,, —ihn k-1
£ slf|A= -4 ™ B> o -0, <[f,

i=a

Th  Te o s
WA= RN

That 1s:

K k

0<An>:-ﬂ“szc <\f|}wﬂ -,

i=a

(25)

From assumption 1 we know that f,,, are bounded in
the Q, so according to Eq. 23, when k—+, we have:

0< l""’ﬁicj <@

i=o

then:

lim o(t*) = 0
From Definition of F-function, we have:
fint =lim-'s [ =0
according to the conclusion Eq. 21 of Lemma 2,we have:
limodg*p=o
Therefore:
o=
because of the Definition of F-function.

NUMERICAL EXPERTMENTS

Here, we use the nonmonotone MMA algorithm to
test a few standard test problems. Algorithm is operated
in PC whose operating system 1s windows 7 version and
the compiler is C™ version.

In algorithm 1, parameter are ¢, = 2, ¢, = 0.5, T = 300,
K =7, pu =40. Other parameters are determined according
to selection strategy. In nonmonotone line search, select:

_ }L(k+l)2 i)

p= 0003, w = 0.4, Conditions for the termination s ||g¥|.<e,
£= 107", If the iteration of the algorithm outmumber 2000,
then the algorithm will be forced to end.

We use M and 1 for debugging variables. When
M =1 and =1, algorithm 1 become MMA algorithm of
monotone line search. When 1 = 1 and M1, algorithm 1
become nonmonotone MMA algorithm based on F-rule.
In the tables below, n is the dimension of test function, n,
1s search iterations, f(X*) is functional value of
approximate solution X*. The following two problems are
selected to be tested.
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Function 1: Multimodal function:
() =2x* —1.05x! +éxf —x%, + %5, X" =(15,05)"

As is seen from Fig. 1, there are 3 relative minimum
points A,B.C and 1 global minimum point A, f.,, = 0.

Asis seen from Table 1, whenM=1and1=1, 1t 1s
monotone search and does not obtain the point A of
global optimal value. Keep M remain unchanged. Tet A
increase gradually, then p, (1) increase along with 4.
When 4 increases to a certain amount, f(X*"") which
satisfies f(X"")<p.f,, can go beyond f(X"). Therefore,
iteration point X* can jump out the lows B and search to
the global minimum point A.

As is seen from this example, the result of monotone
line search method 1s not necessarily the globally optunal.
Nonmonotone algorithm based on F-rule is to search the
next iteration point by combining the function values of
the first m(k) iteration pomnts. Note that the associated
result is not necessarily optimal globally when the

As is seen from Table 2, when A = 1 then p, = 1,
£(X*") can’t go beyond £(X"). Once X" is located near the
B or C, it is impossible to find out the optimal solution
point A. When A remains fixed and M varies,the solution
is almost the same. When M<5 and A = 100, the optimal
solution poit A 18 finded out with less iteration

number than A = 1.

Function 2: Oren function (Grippo et al., 1989):
a 2
£(3) = {2 ix f}
i=1

X' =, D", X*=0, 0", fX*=0

The comparisons between algorithm 1 and the TNNL
algorithm are made and presented in Table 3, where n,nau,

Table 2: Experimental result of filnction 1

combination is small enough. Algorithm 1 can enlarge the I:I i‘ ;Z 302(95);638 1;1 )ILOO ;1 15:(;;8)05 .
. . . . . . (=3
function combmatlgn of the sevel."al points that appear ;3 0.208638 3 100 27 26831268
before the current iteration to achieve relaxation effect. 4 1 36 0.208638 4 100 33 5.34422e-8
Therefore, the globally optimal solution can be obtained 5 1 37 0.298638 5 100 38 8.43806e-8
by virtue of very few iterations based on algorithm 1. 6 1 49 0.298638 6 100 Sl 5.38465¢-8
Table 1: Experimental result of Function 1 Table 3: Experimental result of oren function
M A X% M A n F(X*) n M A 1 Nymw
1 11 0298638 30 1 125 0.208638 10 2 14 17
1 72 0298638 30 3 29 0.81325¢8 0 2 5 12 2l
1 775 0.298638 30 5 219 9.84325¢-8 100 2 5 17 23
1 70 0.298638 30 7 219 9.84325¢-8 1000 2 3 25 -
1 17 2.89662e-8 30 9 219 9.49873e-8 10000 2 5 27 -
10 g — i — - i
Ih-. 004F .3.33 907 28% FIF = 1.02 :
| 28 i . e _
08 | 34 e e ™ 9768 B
j i ;£ ’ = -H'\__
06 - P ,'/ kY
04 F _.-" __-"f o -"\_ r
| o rd "
Ty S o e \‘x
02 L ol £ 102 - q
. 1.28 o r Y | | | . " i
00 L + VAN agrecor |0 f S e SR ]
r - i I A ..l_'
02 i e 4
i \\_ | .-';l il ll'28 2,05
04l = \ X 5 ba1
Jo \ A5 ) /.» 2156
06 H ' c y ."-\. s # 2‘38g7
| \ F A
0.768 " ., 0152 o 1338
08 | _P.512 v \.\, i y "'.-g
| s rd »
{ 402 . i
210 o I L L
-20 -15 -1.0 -05 05 1.0 15 20

Fig. 1: Contour of function 1
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refers to as the iterations given in Sun and Zhou (2007).
From the table, it is seen that n g, is far larger than n_ for
each situation.

The test of numerical example indicates that
nonmonotone MMA algorithm we have proposed can
solve large-scale optimization problems. Futher, the
comparisons given above show that the proposed new
nonmonotone  MMA  algorithm  possesses  certain
advantages, especially in multiple peak problems. Tt is
mentioned here that the selection of the parameters
mvolved mn algorithm 1 can greatly influence on the
efficiency of the algorithm. In order to keep the parameter
value the same, so the iterations n, in the table above are
not the least. Different functions have their own better
parameter combination. How to choose proper parameters
to reduce the 1terations 1s a problem of firther research.

CONCLUSION

For unconstramned optimization problems, we improve
MMA algorithm which is not necessary to adjust the trust
region radius for reducing the search time. We propose a
new nonmonotone combination rule for line searches. We
have proved the global convergence of this new algorithm
and numerical experiment results show that the new
nonmonotonic MMA algorithm is effective to solve the
optimization problems of multi peak and large-scale.

From nonmonotone rule for line searches Eq. 22, we
know f(x*"<pfy,. When f(k)>0, then p=<l. So,
f(x*)=f(x*) is possible. When fj;,<0, then O=<p<l,
fx"N2(")=f(x") 1is also possible. Therefore, the
nonmonotomc aim 1s achieved. From Eq. 25, we have
= < AE(x")| and A2 1, so the aim of f(x™')>f(x") can be
achieved and the purpose of relaxation can be achieved
too. Our greatest breakthrough point is to let x* out of x°
near the bottom to search better solutions.

Combinatorial search criteria Eq. 22 is easy to be
realized and there are a lot of h,, such as:

bt
k+1)F

constant p>1, then the series:

> 1
= (k+1)F

converges 1n a finite number of vy, then:

1
lkz.‘B(Hk)" =3
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