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Abstract: In earthquake rescue, all kinds of secondary disasters may occour at any time, roads easily damaged.

So we need pay more attention to the distance dynamic measurement. In this study directed distance is

proposed and its assessment methods are discussed. Based on it, a new model of the route selection in

earthquake rescue is established. An improved max-min ant colony algorithm is applied to solve the problem

so that the emergency relief supplies will be sent to the disaster area more efficiently. Improved max-min ant
system not only restricts the pheromone on paths, but also makes an improvement for update pheromone,

which can avoid falling into local optimal path and can more easily found the global optimal path. Finally, a case

shows that the algorithm 1s feasible.
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INTRODUCTION

Recently, natural disasters are frequency. Especially
big earthquake not only
unpredictable, but can lead to secondary disasters, which

disaster 1s sudden and
pose serious hazards for people's lives and property. How
to find an effective rescue path for the rescue teams in the
shortest possible tine after the earthquake disaster
becomes the focus of attention.

There are many different types of emergency
response models to solve these natural disasters
(Tbri et al., 2010; Zheng and Ling, 2013). VRP was much
concermed in recent years and it is used to solve such
problems but few considering the change of the roads
(Chen and Tmg, 2006; Li, 2013). In these studys, the
straight line distances are widely used. In the earthquakes
rescue, roads are easily damaged. Therefore, it is
necessary to do more detailed studies on the route
selection problem in earthquake rescue.

So we need renew the traditional model of the route
selection problem in earthquake rescue, pay more
attention to the role of distance in the model and to find
the right method to measure and reflect its change , makes
it more comply with the actual situation.

Ant colony algorithm is capable of mtelligent search
and global optimization; meanwhile, it has the
of vpositive feedback, distributed
computing, robust, easily combining with other algorithms
and so on. Positive feedback can speed up the

characteristics

convergence rate, quickly find the best solution

Distributed computing can make the algonthm parallel and
exchange of
information and transmission, which 1s faverable to find
better solutions (Zhu and Wang, 2007).

Ant Colony Optimization (ACQ) was introduced in

individuals can maintain continuous

1991 by Dorigo and it was successfully applied to
symmetric TSP problems. Later it led to Max-min Ant
System (MMAS) and the Ant Colony System (ACS)
(Lee et al., 2010, Kazharov and Kureichik, 2010). These
algorithms have been applied to routing problem,
distribution  problem, scheduling problem, subset
problem and so on and all of which has received better
results.

This study will discuss dynamic assessment method
of directed distance and establish a new model of the
route selection problem in earthquake rescue based on
it, then propose an improved max-min ant colony
algorithm to solve it, thus avoided fallmg mto local
optimal path and can ultimately found the global optimal
path. At last the study will carry out a case of the model
and algorithm.

Problem description: This 15 a problem of finding a
shortest distance as owr objective. There is only one
rescue supply center which 1s the start point and also the
end point. The supply center has K vehicles served for N
accident points, each vehicle with capacity constramt Q.
The vehicle returns to the supply center when the
capacity constraint of the vehicle is met or when all
custommners are visited.
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Assumptions of the problem:

*  Every vehicle must start with rescue supply center,
return to it

* FEach accident pomnt s visited only once by one
vehicle

* Total demand serviced by each velicle cannot
exceed the load weight of vehicle

¢ Because some parts of roads might be damaged, here
distance from accident point i to accident point j not
necessarily equal to the distance from accident point
J to accident point i

Directed distance measurement: Let ¢; indicates the
measurement value of the directed distance from accident
point 1 to accident pomt j. Its value can be gained
according to the following scale rules considering actual
distance, road conditions and pass tumne.

s 0O<c; =2: Pass fast, road is slightly damaged

¢ 2<g; =3: Pass faster, road is moderately damaged

¢ 3<g; =5: Pass slower, roads is seriously damaged

¢; 6—+o0 Can't pass, road is sericusly damaged or no way

For this problem, we use the method of expert
evaluation and can get the directed distance measurement
value from one accident point to another accident point
according to above scale rules.

Mathematical model: We present a mixed nteger
programming formulation for the VRP. Let us define
variables:

¢, Directed distance measurement value from customer 1
to customer j

q;: The shipment size of customer i

Q% The capacity of vehicle k

if vehicle k travels directly
X, = from customer i to customer j

0 otherwise

{1 if vehicle k services customer i
Yi =

0 otherwise

s;: the service order at customer 1
The problem can be stated as follows:

subject to:
N
Sqy, <Qk=12..K (2)
i=0
K 1 i=12..N
Sya=1. (3)
by K 1=0
N
Moy, i=01,20Nik=1,2,..,K ()
i=0
K
Yoy, =012, Nk =12, K (5)
=0
X0 Wi-jk-12,..K (6)

g -8 +(N+DY ' xE =N
=8+ ( ); y &)
ixii=1,2,0,N;j=1,2, N

xf; 40,1}y, €{0.1};8 >0

The objective is to minimize the sum of all directed
distance measurement values subject to vehicle capacity
constraints. N is the number of customers, K is the
number of vehicles.

Eg. 1 is the objective function of the problem.
Equation 2 means the load of every vehicle cannot exceed
the limit of capacity. Equation 3-6 state that all routes
(tours) begin and end at the depot and that each customer
1 18 serviced by one and only one vehicle and ensures
every route starts and ends at the delivery depot , also
specifies that there are maximum K routes going out of the
delivery depot. Using Eq. 7 can avoid circuit.

ANT COLONY OPTIMIZATION

Many researchers also use ACO to obtain near
optimal solutions or even global optimal solutions for VRP
(Rizzol et al., 2007). Bullnheimer et al. (1999) used a
nearest neighbor heuristic for VRP m ant systems. Bell
and McMullen (2004) applied ant colony optimization to
an established set of vehicle routing problems.

Suppose b(t) 1s the number of ants at point 1 at time t, m
15 total number of the ants, T;(t) 15 pheromone amount at
time t from point i to .

Supposed p is the volatile coefficient of pheromone
which shows the speed of pheromone’s volatilization.
When all the ants have traveled, the pheromone on each
path is:
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T, (t+ 1) = (1—plety (t)+ Agy(t,t+ 1) (8)
At (tLt+1)= iA‘EE {t,t+1) &)

AT, (t,t+1) 1s incremental pheromone on path from 1 to j
during traveling. At the beginming, Atf(tt+1) 1s the
pheromone that ant k release on the path from 1 to  during
traveling, which is determined by ants” performance. The
shorter the path is, the more pheromone is released:

c, . o
—+ if ant k travels from i to
At =iL, ! (10)
0 otherwise

where, C, 1s a constant and L, 13 the length of the tour
constructed by ant k. In the construction of a solution,
ants select the following pomt to be visited through a
stochastic mechanism. When ant k is in point i and has so
far constructed the partial solution, the probability of
going to point | is given by:

o B
ko = b
Pu - Evealluwadk(t)":;](t‘) L
0 otherwise

je<allowed, (t) (11)

where, allowed,(t) = (1,2,..., N)-tabu, is the set of points
that ant k can choose currently. tabu, is the taboo list of
ant k , recording the points that ant k has traveled
through, to indicate ants” memo ability. m, is prior
knowledge wvisibility, o 1s the mnportance of residual
information on pathito j. 4 is the importance of elicitation
information.

Ant colony system: The most interesting contribution of
ACS is the introduction of a local pheromone update in
addition to the pheromone update performed at the end of
the construction process (called offline pheromone
update).

The local pheromone update is performed by all the
ants after each construction step. Each ant applies it only
to the last edge traversed:

T; = (-0 +ay (12)

where o (0, 1] is the pheromone decay coefficient and t,
is the initial value of the pheromone. The main goal of the
local update is to diversify the search performed by
subsequent ants during iteration: by decreasing the
pheromone concentration on the traversed edges, ants

encowrage subsequent ants to choose other edges and,
hence, to produce different solutions. This makes it less
likely that several ants produce 1dentical solutions during
one iteration.

The offline pheromone update is applied by only one
ant, which can be either the iteration-best or the best-so-
far. However, the update formula 1s slightly different:

- {(1 —p)T; + pAT; if(i, j)belongs to best tour (13)
1

T otherwise

Another important difference between ACO and ACS is
in the decision rule used by the ants during the
construction  process. In  ACS, the so-called
pseudorandom proportional rule is used: the probability
for an ant to move from point i to point j depends on a
random variable q umformly distributed over [0, 1] and a
parameter qg, that 1s:

i= arg max{tu(k)n:j(k)}, if g=gq, (14)
ite) AR othwise

Otherwise Eq. 15 can be used.
IMPROVED MAX-MIN ANT SYSTEM

The max-min ant colony algorithm has been proved
by simulation, possesses advantage on solving
optimization problems (Yu and Wang, 2013; Liu et af.,
2012).

The biggest difference between ACO and MMAS is
that the pheromone on paths in MMAS is restricted to a
certain extent to avoid into local stagnation as:

T tij (t) Z Tnax
=1 ) Tt (15)
T 1,0 <T,,

In MMAS, introducing T, can effectively overcome
stalled shortcomings of ACO. Introducing T, can
overcome the shortcomings in local optimum of ACO.

Concerning the lower and upper bounds on the
pheromone values, T, and T, they are typically
obtained empirically and tuned on the specific problem
considered.

Here we may set initial value of 1, and T, as
constant, after first search update according to dynamic
strategies as:

L (s
Al-py L™

T (1)
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(1) =2 an

2

where C, is a constant. L™ is the length of the best path.
In finding feasible solutions, ants perform the process of
update pheromone. This process consists of both
pheromone evaporation and new pheromone deposition
which can guide ants to explore possible paths and avoid
trapping i locally optimal solutions.

Improved max-min ant system not only restricts the
pheromone on paths, but also makes proper improvement
for update pheromone. Updating pheromone in ACO 1s for
all ants, but in MMAS it is only for the ants that have
found the best solution currently. Updating pheromone in
MMAS is as follow:

T, (t+ 1= (1-pyy, (1) + AT (18)

At = C I E(L™) (19)
where, C, is a constant.

In the process of construct solutions, ants will utilize
pheromone trail and heuristic information to build feasible
solutions. Ant k at time t positioned on node r moves to
the next node s with the rule governed by:

_ arg {ma‘xv:allnwadk(t) [‘Erv (t)ﬂfv :I} When(q = qu) (20)

S otherwise

B}

where T.(t) 1s the pheromone trail at time t, 1, 1s heuristic
information, ¢ is a random number uniformly distributed
in [0,1], g, is a pre-specified parameter (0 = q 7 1),
allowed,(t) 1s the set of feasible nodes currently not
assigned by ant k at time t and S 15 an mdex of node
selected from allowed,(t) according to the probability
distribution given by:

T (Ul
PJZ (ty= 2 veallowed, (t) Crv (t)n?v
0 otherwise

if s e allowed, (t) (21)

Here we set: 1, = 1/C,, C,, 18 the directed distance from
point r to s.

ALGORITHM FLOW

¢ Step 1: NC =0 (NC is iteration), load(k) = O(that is the
load of each vehicle), set imtial value of t and T,
and other parameters initialization

*  Step 2: Put m ants at the supply center

s Step 3: Calculate the transition probability of ant k
based on Eq. 20 and 21. Choose and move to the next
point s and add s to k tabu, at the same time

»  Step 4: When solving the problems including more
vehicles, algorithm is affected not only by probability
transfer, but also by wehicles” maximum load
capacity. Check whether the velucle load reaches
maximum load. If so, the vehicle returns to supply
center directly

s Step 5: Check whether tabu, is full. Tf not, return to
Step 3. Otherwise, go on Step 6

s Step 6: Calculate objective function and record the
best solution currently

»  Step 7: Update pheromone based on Eq. 18, 21

s Step 8: IfNC<NC,,, then NC+1, empty tabu, and go
back to Step2. If NC<NC__,, end

A case: Suppose that the coordmmate of supply center 1s
(0, 0). Supply center allocates 3 vehicles to 8 accident
point to deliver relief supplies. The load weight of per
vehicle 15 100. Tab.l mdicates coordinate data and
demand of each point.

First we need invite some experts for asymmetric
directed distance assessment. Different from the straight
line distance, here distance from point i to point j not
necessarily equal to the distance from pomt j to pomnt 1.
Under normal circumstances, matrix is asymmetric.

We use a large number M (For example, M=1000)
represents that the road is impassable. Suppose after
assessment all distance value from point 1 to j get as
showed in Table 2.

We can use the method introduced above to solve
asymmetric distance VRP in the earthquake rescue.

Table 1: Coordinates and demand

No. 1 2 3 4 5 6
7 8 9
X 0 8 13 15 5 9
10 1 5
¥ 0 5 6 2.5 5 3
1 4 6
Demand 0 30 25 33 30
38 25 45 50
Table 2: Distance assessment values
Cy 1 2 3 4 5 6 7 8 9
1 - 4.8 371 4% 383 475 399 489 395
2 48 - 456 4.63 492 466 475 479 344
3 456 456 - 4.87 256 465 258 283 339
4 1000 4.63 487 - 465 495 463 492 288
5 38 292 366 3.65 - 3.84 355 4.56 4.69
6 475 466 465 495 1000 - 449 268 4.97
7 349 275 358 263 455 449 - 4.95 429
8 439 379 483 39 3.56 368 495 - 4.86
9 295 444 439 488 469 497 329 385 -
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Fig. 1: Optimal path

In sinulation, we need to 1dentify a set of parameters.
Experiments were conducted on PC with matlab7.0 for
tools.

Let parameters as: Ne,,,, = 1000, m=50,¢=1,3=2p
=025,C=C=1,C,=20, 1, =002, 1. = 20.

After many times experiments using different
parameters we can find out that the results were same in
the end. According to the computer simulation 3 routes
found as Fig. 1. The optimal value 1s 42.89.

The first route is: supply center—point S5—point
2—point 3—+supply center.

The second route 1s: supply center —poimnt 6—point
4—point7—supply center.

The third route is: supply center —point E—point
9—supply center.

CONCLUSION

In emergency rescue, emergency logistics
enviromment 13 often uncertain. For all kinds of secondary
disasters may occur at any tine. Therefore, in the
emergency rescue, we need consider vary conditions in
order to better reflect the emergency route selection
problem.

This study has made the beneficial attempt. The
simulation results have verified the wvalidity and
practicability of the model and algorithm discussed above.
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