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Abstract: The problem of mean-square exponential stable control for fuzzy networked systems with stochastic
delays is considered in this study. A new T-S fuzzy model of nonlinear networked control systems is derived.
The networked induced delays are assumed to satisfy Bernoulli distribution characteristics. By constructing
a new Lyapunov function, the mean-square exponential stabilization condition is obtained in terms of linear
matrix inequality, then, the state feedback fuzzy controller is designed. Finally, a numerical example 1s given to

demonstrate the validity of the results.
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INTRODUCTION

Networked control systems (NCSs) (Fridman et al.,
2004) are systems where the feedback loop 1s closed via
a communication network m which information, from
various components such as sensors, controllers and
actuators, is exchanged with limited bandwidth. NCSs
have received increasing attentions mn recent years
(Mondie and Kharitonov, 2005; Gao et al., 2008).

However, the network itself is dynamic system that
exhibits characteristics such as network-induced delays.
Those delays come from the time sharing of the
commumcation medium (Walsh et @f., 2001). As 1s known,
network-induced delays can degrade a system’s
performance and even cause system mstability. Many
researchers have studied stability analysis and controller
design for NCSs (Xiong et al., 2003). It is quite common in
practice that the time delays occur in a random way, rather
than a deterministic way. Both network-induced delay and
packet dropout in network transmission have very large
mnfluence for stability of the whole system. A model of
NCSs  was provided under consideration of the
network- induced delay and the packer dropout in
transmission { Yue et al., 2004). A scheduling methed for
network-based control systems is given to design the
state feedback controller (Park et al., 2002). Liu obtained
a new stability criterion of networked predictive control
systems with random network delay m the feedback
channel (L and Xia, 2007). Zhang gave the guaranteed
cost networked control for T-S fuzzy systems with time
delays (Zhang et al., 2007a). How to analyze stability of

nonlinear NCSs 15 a challenging and interesting topic.
Some results about the stability of non- linear NCS were
obtained. A new T-S model of NCSs with uncertainties 1s
obtained in (Zhang et «l., 2007b). Based on the model,
Zhang gave the approach to design the robust H,
controller which makes the NCSs exponentially stable.
Jiang and Han designed fuzzy controllers for a class of
non-linear networked control systems (Jiang and Han,
2008).

PROBLEM FORMULATION

Consider the following nonlinear control system with
delay Rule i:
TF z,(t) is M',,... and z,(t) is M. Then:

Xty =(A, + AA (D) + (A, + AA ()x(t—d) (1)
+(B, + AB,(thu(t)x(t)=o(t) t[-d, 0]

where, z(t)=[z,(t) z,(t)-- z,(1)]" 1s the premise varable,
x(t)eR™ iz the systems state vector, u(t)eR™ is the
controlled input vector, M. are fuzzy sets. A, A, e R™ are
known constant matrices, B, cR™® 1s Input matrix,
o(t)eR" 1s the given mitial state on [-d, 0], d 1s state
delay, q is the number of IF-THEN rules.
AA, (D), AA (1) eR™ representing the uncertainties and
satisfying — [AA (1) AA,(1) AB(1)|=DFM[E, E, E,]
whereD, E_, E,,, E,, are constant matrices with appropriate
dimensions, F(t) is a matrix with appropriate dimensions
satisfying FT()F(t)<1. By using a center average
defuzzifier, product inference and a singleton fuzzifier, the
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global dynamics of the T-S fuzzy systems are described

by:

= iu, (LI(A; + AA (L) + (Ay + AAL (UDx(L-d)+
(B, + AB, ()yu(t)]x(t) = §(t)t  [d, 0]
(2)

Where

o, (z(L))

0,@0) = [ [M(z, (), 1 (2(0) =
o alt)

where o, (z(t)) satisfying:
o (2(1) =0, icox(z(t))>0, i=1 2 - q
i=1

Throughout this note, we suppose that all the system's
states are available for a state feedback control. In the
presence of the control network, data transfers between
the controller and the remote system, e.g., sensors and
actuators in a distributed control system will induce
network delay in addition to the controller proceeding
delay. We introduce stochastic delay t(t) to denote the
network-induced delay. In this note we make the following
assurm ptions:

Assumption 1: Sensor and controller are clock-driven
Assumption 2: Actuator is event-driven.
We will design the state feedback fuzzy controller:

u(t)= X (20K, X -1 (3)

where, T(t) 18 the stochastic network-induced delay
satisfying ©(t)<[0, 1] .

Inserting the controller (3) mto system (2), we obtain
the closed system:

2(1)= 2 D (O, (O, + A ()x(D)
+(Ay +AA (D)Xt —d)+ (B, + AB, (t))K]X(t —T(t)]
X =yt) te[-d, 0]

“4)

The imitial condition of the state 1s supplemented as
x(O)=y(t), wherew(t) is a
[-d, 0], d=max{t, d} . Therefore, there exists a positive
constant W satisfying:

smooth function on

[ gt) l<y te[~d, 0]

Tt is assumed that there exists a constant ¢, €[0, 1]
such that the probability of () taking values on [0, 1))
and [t.1t] can be observed. In order to employ the
information of probability distribution of the delay in
the system model,
firstly:

the following sets are proposed

O ={t:teld, ©)} @ ={txt)elr, 10

Obviowsly Q NQ, =0
Now we define two functions:

h(t) = {‘E(t) te Q) b= {‘E(t) teQ, (5)
0 teld T t g€,
and a stochastic varable:
B lte Ql (6)
-1\ oe

By using the new functions h(t)h,(t) and stochastic
variable P(t), the systems (3) can be equivalently written
as:

5(0) = 2D 1 (20, (2R, .
x(t)=o(t) te[-d, 0]

Where:

Ay=[A; Ay BBK; (1-B)BK,

g =0x" m.x" t—d)x" (t=Ty ©).x (t-hye)]
A=A +AA (D) Ay =A +AALD)

B, =B, + AB, (1)

MAIN RESULTS

Definition 1: Yue et al. (2005) For the systems (7), if there
exists constants ®>0and 71 such that:

E{[x(D}= YisaggUE{H WS e, t=0

Then the systems (7) is mean-square exponentially stable.
Lemma 1(Xia et af., 2008) For matrices X,,Y,(1<i<r) and
matrix S>0 with appropriate dimensions, the following
- equality 1s hold:
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22 2 E E K ].I.] “’p“‘lxi}- SYpl

i=l j=l p=1 l=1

f ) .
<3 S (XISX, + Y SY;)

i=l =l

where, 1, (1<i<r) denotes p (z(t))=0 and:
>ontny=1

Lemma 2: Xia et al (2009) For any vectors a, b and
matrices N, X, Y, 7 with appropriate dimensions, if the
following matrix inequality holds:

X Y
>0

then we have:

e TalT X vY-NTa
—2a Nb < inf T
xz/b| |YT-NT  Z b

Lemma 3: Zheng et al. (2006) The LMI:

Y(x) W(x) o
* Rx)

is equivalent to:
R(x)>0, Y(X)-WER (X)W (x) >0

where, Y(x)= Y (x),R{x)=R"(x) depend on x.

Lemma 4: Zhou and Li (2005) For known constant &> 0
and matrices D, E, F which satisfying F'F<I, then the
following matrix inequality is hold:

DEF+E'F'DT <eDD" +€'E"E

Theorem 1: For the given constants > 0.1=P=0 and

ij=1 2--. q, if there exist positive-definite matrices
P,Q,R,TeR™ and matrices K, eR"™ and X, X,;. Y,
with appropriate dimensions, such that the following

matrix inequalities hold:

0, 6, 6, 0,
@— * ®22 ®23 ®24 (8)
* = 0, 6,
#* #* #* (O]

Where:

=P13L1 + K]TP-# Q+20P+ 1 X, +1X,, + Y,
+Y +Y, + Y, +ATRA, +TATTA
@, =PA, +T, X, + T, + Y + Yo, v LATRA, +TATTA,
®13 = Pﬁ'ﬁxK,‘ + ‘51X113 + TX213 *Yn + Y113- + Y2T3
+ T A/REBK, + tA/TPB K,
=P(1- B)BjK, AT X T Yl-i -Yy + YzTa
+TLAJR(I-PBK, + TA[T(1-BB K,
@, = e MQ+ X, + X, +TARA, +TALTA,
=1, X;+ Xy — Y, + TALRBBK, + TAL TBB K,
®24 =T X, + Xy - Y, + 11‘3‘1};‘(1 - B)E1K,
+ A, T1-PBK,
T TRT o
®33 = T1X133 + TX233 7Y'13 *Y13 + thj B; RBB‘K]
+ KB/ TBBK,
®34 =T X+ X 7Y1: o
®44 = ‘EIX144 + ‘EX244 - Y24 - YZ-EI + ‘E1K;FBTR(1 - B)B1K,
+ KB T(1-fBK,

with the fuzzy controller (3), the network control systems
(7) 18 mean-square exponentially stable.

Proof: Choose a Lyapunov functional candidate for the
system (7) as follows:
V) =x"(OPx() + [ X" (5)Qe™ " x(s)ds
+f [T (@Re™ U x(s)dsd0

L | Zols-1) g
+ ft J.He X (8)Te x(=)dsdo

where, P. Q. R, T positive-definite matrices m theorem]l.
Then, along the solution of system (7),we have:

V(t)+ 20V ()
— 2" (OPE() + X" (HQX(t)
—x (- Qe x(t - d)+ X (HRX(L) ©)
+ ()T + 20xT (OPX(t)
— J.:n %" (5)Re™ k(5 )ds — LXT (5)Te™ " x(s)ds
With

X(£) - x(t - h, (1)) - _[;h | xi)ds =0

and
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x(t) = x(t—h, (1) - [ ih (s =0

For any 4n*n matrices:

Nl Ml
N=|N,|. M=|M,
N3 M3
we know:
0= &7 (LN[x{t) - x{t - h (1)) - J?_hlw X(8)ds]
0 =ET(OM[x(t)—x(t—h, (1)) - _[t_hm (s )ds]

With lemma 2 and (10-11), we obtain:

0 < 267 (O [x(t) - x(t—h, (t)]+
T OXED+ [ iHXT(s)ReMS")X(S)dS

0.< 28T (1), [x(1) — x(t — h, (1))]+

T OX,E()+ [ & (©)Te™ " k(s)ds

Tnserting (12-13) into (9), we obtain:

V(t)+ 20V (t)
< EZh (2 (L), (X (V[PA, + ATP+Q
+20P]x(t)+ 2xT (P A x(t —d)
+2x" (OPP(HB K x(t— Dy (1)
+2x" (OP(1—B()B,K;x(t —h, (t))
—x" (t—d)Qe ™ x(t —d)
+ 28T ()Y, [x(t) - x(t =, {t))]

+ T T, &)+ 28T (1) Y, [x(t) - x(t —h, (t))]
+ 8T XA+ T, kT (R k(D) + T (£)Tx(t)

With Lemma 1, we have:
X (ORX(t) < 1, ZZM (), (2(0))ET (HATRAE(L)

= S (2 () (1)

ARA, ATRA, AJRBLBK,
Jo* ALRA,  ALRB(DBK,
- - B (LUK B/RB K,
* * *

(10)

(1

(12)

(13)

(14)

AR(1-PBK,
ALR(1-B()BK,
B(t)(1—B(t))KB{RBK,
(1-B(t)'K]B/RBK,

&(t)

(15)
and
o OTH) £ T3 1 O (Z()E (OA]TAED
=73 S ) (O (1)
A[TA, AJTA,  ATR(BK,
Jor ALTAL AUTBUBK, 16)
* * P (K B/ TBK,
AlTA-BOBK,
ALT- BB
PORS o
Bt)(1-B(tHK B/ TBXK,
(1-B()Y KB/ TBK,
It 1s easy to know that:
26T (1Y, [x(t) — x(t —h, ()]
Yo+ Yy Y oY, +Yno Y an
17
. * 0 -, 0
TR A
* * * 0
28" (Y, [x(t) - x(t 1, ()]
Y21+Y2T1 YzT2 Y2T3 _Y21+Y21;1
: * o 0 Y, (18)
sl I
* * * *Yza*YzTa

Inserting (15-18) into (14), we have:

E{V(t)+ 20V (1)}

< 33, (0, (2T (OO

With matrix inequality (3), we know:
E{V(t)} < —20E{V(1)}

Therefore:
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E{V} <E{V(0)}e™ < [A (P)+ dA 0, (Q) (19)
T P (ROP + T (I JE{ i) | e

Obviously:
E{V(0)} = A, (PEL] x(0) | (20)
From (19-20), we obtain:

E{ll x) (1}
. Jxmx ®y+di, (Q+ g, (R + A, (DY

7 (P) E{]lyi(t) [ 3™

With the Lyapunov stability theorem and the above

inequality, we know that the system (7) is exponentially
stable.

Theorem 2: For the given constants > 0.1=P=0 and

i, j=1 2--,q, if there exist positive-definite matrices

P,Q.R,TeRrR™ and matrices g cp== ¥ % ¥ with
i D SHID CHI AR

1ij» >4 L
appropriate dimen- sions,such that the following linear
matrix inequalities hold:

a{% “w}o 1)
* =
=22
Where:
7A]§+§A‘T +Q+20P APrTX,
+T1}_(111 + t}_(zn + ?11 *T}_(m + ?1T2
= _|+Y1+Y,+Y, +5DD" +Y,
g2 = aa= _ —
* -~ dQ+ ":1X122 + ‘EXm
* *
* *
BBiiJ + 115(113 + ‘E}_(mz (1_ B)Bji, + ":1}_(114
*?11 + ?12 + ?21-3 +‘E}_(214 + ?11:1 - ?21 + ?21-4
11X123 + TX223 - le 11X124 + Txm 7Y22
":1X123 + ":Xzzz _Y13 _Ylg ‘Eleza + ‘EX234 _Y11:1 iz
- T X144 + TXzaa - Y24 - YzTa
LpPAT L (1-BPA]  tpPAT  t(1-B)PA]
o | wPPAL  T(-PPA;  TBPAL  T(I-BIPA,
| 4pETB] 0 KRB} 0
0 7, (1- HK]B] 0 (1- FIK]B]
PE} TBPE; T (1-BPE. tBPE;, t(1-P)PE]
ﬁETz T BﬁE:rz T (1 - B)ﬁEL ‘EBﬁETZ ":(1 - B)ﬁEL
BKTE; TPKIE; 0 pKE] 0

(1-PKE, 0

1,(1-pKTEL 0

it

Ul-PKJE;

E,, = diag{—t,pR + &,DD", -1, (1 - B)R + &,DD, T
+g,DDT, —t(1-P)T +&,DD", —g L -g,1,—¢,I,—,L —&.I}

with K, =K,P™,K, =K,P™", the systems (7) is mean-square
exponentially stable.

Proof: With lemma 3 and lemmad, by giving some
transformations:

P=P", Q=P'QP, K, =K P, X, =P X, P",

Y, =P"Y,p", R=R™, T=T"
we know that inequality ®<0 1s equivalent to(21).
Therefore, the linear matrix mequality (21) 1s equivalent to
(8). With Theoreml, the systems (7) i1s mean-square
exponentially stable.

CONCLUSION

This study considers the exponential stability control
problem for a class of nonlinear networked control
systems (NCSs) with stochastic network-induced delay.
A T-85 fuzzy model is employed to represent the nonlinear
controlled plant in the NCSs. With the Lyapunov stability
theory, the exponential stability condition and the state
feedback fuzzy controller design method are given in term
of LMI..
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