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Abstract: An efficient differential evolution algorithim (AEDE) for function optimization is proposed. First, with
population evolution, AEDE divides population into three groups by the fitness’s normal distribution and the
three groups adopt different mutation operators. Second, the selection of the individuals involved in mutation
operation uses alternatively a random method and a roulette wheel method based on affinity matrix. To validate
the superiority of AEDE, AEDE and scme state-of-the-art DE variants proposed in pertinent literatures are
compared as regards nine benchmark functions. The simulation results show that ANDE promises competitive
performance not only in the convergence speed but also in the quality of solution.
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INTRODUCTION

Differential Evolution (DE), proposed by Storn and
Price (Stormn and Price, 1995), 15 a relatively new
optimization technique. Tt is very easy to implement,
requires little or no parameter tuning and has been
successfully applied in many problems domain. It has
been investigated that DE 1s faster and more robust in a
plethora of problems than many other evolutionary
algorithms (Storn and Price, 1995; Price et al., 2005,
Vesterstrom and Thomsen, 2004).

However, it has been observed that the convergence
rate of DE do not meet the expectations in cases of highly
multimodal problems. Several DE variants have been
proposed to improve its performance (Qin and Suganthan,
2005, Wang et af, 2007, Noman and Iba, 2008,
Epitropakis et al, 2008, Zhang et al, 2010
Montgomery and Chen, 2010, Wang et af, 2011;
Epitropakis et al., 2011; Mininno et al, 2011). The
exploration and exploitation are two kind of different
search mechanism in DE like other intelligent optimization
algorithm and the balance between them 15 the key factor
to the performance of algorithm (Epitropakis et al., 2008,
Macready et al, 1998). In this paper, a efficient DE
algorithm (AEDE) is proposed which is expected to
achieve better balance of exploration and exploitation by
multi-strategy differential mutation mechamsm. Extensive
expermments have been conducted to compare AEDE
with the classic DE (Storn and Price, 1995), SaDE
(Qin and Suganthan, 2005), CDE (Wang et al, 2007),
DeahcSPX (Noman and Iba, 2008), DMSDELS

(Zhang et al., 2010), ProDE (Epitropakis et al., 2011)on
nine well-known benchmark functions. The test results
show that AEDE 1s very competitive.

THE CLASSIC DE AND MULTI-STRATEGY
DIFFERENTIAL OPERATOR

The classical DE: As a stochastic method, DE algorithm
borrows the 1dea from Nelder-Mead’s method and uses
the randomly generated imitial population, differential
mutation, probability crossover and greedy criterion
based selection to find the global optimum of objective
function. The pseudo-code of classic DE algorithm
(Storn and Price, 1995) 1s given as following:

/* Initialize parameters */

Set mutation scale factor Fe[0, 2],
crossover parameter CRe(0, 1),
population size NP, counter g=10
/* Initialize a population */

while budget condition do
g=gfl

fori=1toNP do

/* Differential Mutation */
select randomly 3 individuals

X1 X, XB P8

Vi = X5 TGt s)
pl.p2.p3e{l,2, NP}/{i}
/# Probability Binomial Crossover */
generate randomly j...6451,2, D}
forj=1toDdo
generate randomty rand(0,1)
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if rand(0,1)<CROT j = jrang
ut=v;

else
it =x,

end
end for
/* Greedy Selection */
if fuF)={(d)
else
XPE=x5
end if

end for
end while

Moulti-strategy differential operator: Many variants of the
classic DE have been proposed which use different
mutation strategies and/or recombmation in the
reproduction stage (Price et al., 2005, Wang et al., 2011,
Epitropakis et al, 2011; Das and Suganthan, 2011). The
originally proposed and most frequently used differential
mutation operators in the literature are as follows
(Epitropakis et al, 2011; Mininno et al, 2011;
Das and Suganthan, 2011). In order to distinguish them,
the notation DE/a/b 1s used, where "a" specifies the base
vector to be mutated (which can be random, the best or
the current vector); "b" is the number of difference vector
used.

+ DE/rand/1;

V= (3 Xs) (1)

¢« DE/rand/2:
V= X AR (- X (- X 00 (2)

*  DE/best/1:
V= X (X ) 3)

*  DE/best/2:

Vi = Kt QG- TP A X) 4
*  DE/current-to-best/1:

V= XAF (X, X0 F (X, -X ) (5)
*  DE/current-to-best/2:

Vi = XK XOHF (X - X )T (X - X) - (6)

In an attempt to rationalize the mutation strategies,
Eq. 1-6, we observe that Eq. 3 is similar to the crossover
operator employed by some genetic algorithms. Eq. 1 1s
derived from Eq. 3, by substituting the best member of the
previous generation, X, with a random individual 3.
Eq. 2 and Eq. 4-6 are modifications obtained by the
combimation of Eq. 1 and Eq. 3.

These mutation operators can be divided into three
categories. The first is the exploratory mutation operator
which includes DE/rand/l and DE/rand/2 and shows a
strong exploring performance but a low convergence
speed. The second 1s the exploitative mutation operator
which includes DE/best/l and DE/best/2 and shows a
high convergence speed but a poor performance on
exploration. The third 1s the balanced mutation operator
which mcludes DE/current-to-best/1 and DE/current-to-
best/2 and shows harmonious on exploration and
exploitation (Wang et al., 2011, Epitropakis et al., 2011).

A EFFICIENT DIFFERENTIAL EVOLUTION
ALGORITHM

Here, we describe the proposed algorithm. Fig. 1 1s
the flowchart of AEDE and its crossover operation
and selection operation 1s the same as the classic DE
(Storn and Price, 1995).

Adaptive mutation mechanism: By extensive experiments,
we have found that the fitness of population presents a
similar normal distribution in DE algorithm. An adaptive
mutation mechamsm is adopted in AEDE. With
population evolution, all the individuals of population are
divided into three pgroups by the normal distribution of

Termination condition
N

Divide population
into three groups

Select mutation operator
for each child population

Calculate affinity matrix
and probability matrix

Select mutation individuals through
the random or roulette wheel method

[ Crossover |
| Selection |

Fig. 1: The flowchart of AEDE
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population fitness and the three groups adopt different
mutation operators.

The probability P(-o<x-p<0) is approximating (.683 in
Gaussian distribution N(p,a%). Let, u denote the mean of
population fitness, o denote the mean square err (MSE) of
population fitness, F mdicate the fitness of the ith
individual. AEDE adjusts the mutation strategies as
follows:

if F-u<-0 which shows this ndividual is a better one,
it would be assigned to the excellent group and the
exploratory mutation operators are appropriate for it
(e.g., DE/rand/1 and DE/rand/2)

if F.-p0 which shows this individual’s performance
is poor, it would be assigned to the poor group and
the exploitative mutation operators are appropriate for
it (e.g., DE/best/l1 and DE/best/2)

if -0<F-p<-0 which shows this individual has a
mediocre performance, it would be assigned to the
middle group and the balanced mutation operators
are suitable for it (e.g., DE/current-to-best/l and
DE/current-to-best/2)

The selection of individuals involved in mutation
operation: A novel framework based on the proximity
characteristics (Epitropakis et al, 2011) was proposed,
where a roulette wheel method based on affinity matrix
was used to select mdividuals involved mutation
operator. This selection method is briefly introduced as
follows. Fustly, the affimity matrix AM, based on real
distances between individuals is calculated by Eq. 7,
whose element AM,(1,)) comesponds to the distance
between the ith and jth individuals:

12
0 lxpxzll - lxfxde
Il =5, % 0 x|l 7
AM, =1 [1x3xf ] lIxgxE 0 0 (x5 x5l

%k %7 || | x5p.x5 1] - 0O

where, Ix,yl is a distance measure between the x and v
individuals. In the case of decision variables with different
search ranges, a scale-invariant distance measure e.g., the
Mahalanobis distance (Theodoridis and Koutroumbas,
2008) needs to be used to avoid any dependence on the
scale of the variables. Here Euclidean distance 1s used
since all the variables have equal ranges in all the
considered problems. Secondly, based on the AM, matrix,
a probability matrix P, is calculated, where each element
P.(1,)) Eq. 8 represents a probability between the ith and
jth individual with respect to the ith row. The probability
of the 1th individual 13 inversely proportional to the
distance of the jth individual, i.e., the individual of the row
with the mimmum distance has the maximum probability:
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AM, (i, j)
HP

2L AM, (ij)
]

PGj=1-

(8)

where, 1,; = 1,2,.. NP. Lastly, the simple roulette wheel
selection according to the probability matrix P, is used to
obtain three individuals mnvolved in mutation operation.

By theoretical analysis and experiments, we find that
this roulette wheel method makes the current individual’
nearest individual have the highest selection probability
and the corresponding mutation operation could be
viewed as a minor fluctuation to the current individual.
Although this method can significantly enhance DE’s
ability of exploitation, there exists a risk of decreasing
DE’s ability of exploration. In order to avoid excessive
exploitation and balance the exploration and exploitation
capabilities of algorithm, we make some improvements to
it. When the strategy of DE/best/l or DE/best/2 is
adopted in mutation operation, the selection of difference
vector individual uses the random method. Meanwhile,
when other mutation operators are adopted, the random
method and the simple roulette wheel method are used
alternately.

SIMULATION

The performance of AEDE i1s tested on 9 well-known
benchmark problems f-f, from literatwe (Wang et al.,
2007, Zhang et al., 2010) and 13 compared with several DE
variants proposed in pertinent literatures. The parameters
seting of these algorithms are consistent with their
original literatures. Tn AEDE, the parameters NP, CR and
F are fixed to 100, 0.9 and 0.5 and the affinity matrix are
calculated in every 50 generations.

The comparison of evolution curve between AEDE
and the classic DE (Storn and Price, 1995) for f; is shown
in Fig. 2. It can be seen that AEDE performs a better
convergence to more accuwrate results and a faster
convergence speed.

Table 1 reports the results that AEDE is compared
with the classic DE (Storn and Price, 1995), SaDE
(Qmn and Suganthan, 2005), CDE (Wang et al., 2007),
DeaheSPX (Noman and Iba, 2008), DMSDELS
(Zhang et al., 2010), ProDE (Epitropakis et al, 2011) in
terms of the best solution, mean solution and the Std.Dev.
of population on f,~f,.

It can be observed from Table 1 that at the same
preset maximum number of iterations, AEDE outperforms
classic DE, SaDE, CDE, DEahceSPX, DMSDLS and ProDE
in most cases. In more detail, AEDE obtams better Best,
Mean and Std.Dev. than DMSDLS on all the mne
functions and meanwhile it 1s better than classic DE, CDE,
SaDE, DeahcSPX and ProDE on most test functions,



Table 1: Comparisons

between  the
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classic DE,

SaDE, CDE,

DEahcSPX, DMSDLS, Pro DE and AEDE on functions f-f; with
dimension 30

Function
(generations)  Algorithm Best Mean SD
£,(1500) DE 522e-14 3.70e-13 3.90e-13
SaDE 2.70e-37 1.90e-35 2.30e-35
CDE 1.00e-06 1.00e-06 2.00e-06
DEahcSPX 3.24e-32 1.75e-31 4.99e-31
DMSDLS 1.40e-45 8.40e-45 7.70e-45
Pro DE 1.62e-31 2.54e-30 2.88e-30
AFDE 1.28e-70 2.09¢-68 2.37e-68
£5(2000) DE 6.20e-10 3.70e-09 2.20e-09
SaDE 2.00e-14 5.80e-14 3.20e-14
CDE 0.00 0.00 0.00
DEahcSPX - - -
DMSDLS 1.60e-23 6.10e-23 2.50e-23
Pro DE 8.84e-21 327e-20 4.09e-20
AFDE 1.11e-35 1.52e-34 1.63e-34
T3(5000) DE 1.10e-11 1.80e-10 1.50e-10
SaDE 3.70e-40 3.60e-37 1.10e-36
CDE 8.63e-00 1.10e-05 1.40e-05
DEahcSPX 1.68e-05 6.52e-05 4.84e-05
DMSDLS 2.50e-02 7.40e-01 1.30
Pro DE 2.50e-19 8.15e-18 9.17e-18
AFDE 2.58e-46 2.72e-44 1.21e-44
T 5000) DE 6.80e-13 3.10e-02 8.70e-02
SaDE 6.20e-11 2.60e-10 1.80e-10
CDE 7.50e-05 7.50e-05 7.50e-05
DEahcSPX - - -
DMSDLS 3.50e-24 1.70e-22 2.80e-22
Pro DE 4.32e-16 6.24e-14 7.35¢e-15
AFDE 1.47e-25 9.59e-24 342e-24
£5(20000) DE 0.00 3.50e-31 2.50e-30
SaDE 0.00 4.50e-30 7.50e-30
CDE 1.12 1.83 6.33
DEahcSPX 1.40e-01 4.52 1.55e+01
DMSDLS 4.40e-11 1.30e-03 7.30e-01
Pro DE 1.57e-28 5.73e-27 7.81e-27
AFDE 8.60e-27 2.19¢-10 3.14e-09
£5(3000) DE 2.00e-03 4.70e-03 1.30e-03
SaDE 1.50e-03 3.20e-03 8.40e-04
CDE 3.50e-04 4.60e-04 3.60e-04
DEahcSPX - - -
DMSDLS 8.10e-04 2.30e-03 5.10e-04
Pro DE 1.28e-02 2.06e-02 2.45e-02
AFDE 7.80e-04 2.10e-03 1.21e-03
T2(5000) DE 1.00e+01 8.10e+01 3.20e+01
SaDE 0.00 3.30e-02 1.80e-01
CDE 1.20e-05 1.80e-05 2.30e-05
DEahcSPX 9.10 2. 14e+01 1.23e+01
DMSDLS 6.00 1.30e+01 3.70
Pro DE 1.71et01 2.47et+01 2.87et+01
AFDE 4.68 1.28et+01 2.23
f3(1500) DE 3.40e-15 3.70e-14 4.10e-14
SaDE 1.60e-32 3.50e-03 1.90e-02
CDE 0.00 0.00 0.00
DEahcSPX 6.39-03 2.07e-02 8.46e-02
DMSDLS 1.60e-32 1.60e-32 5.60e-18
Pro DE 8.75¢e-31 6.43e-30 7.37e-30
AFDE 0.00 0.00 0.00
f5(1500) DE 4.10e-14 2.90e-13 2.90e-13
SaDE 8.10e-32 1.30e-32 5.60e-18
CDE 0.00 0.00 0.00
DEahcSPX 3.64e-32 1.71e-31 5.35e-31
DMSDLS 1.30e-32 1.30e-32 5.60e-48
Pro DE 0.00 1.53e-30 2.12e-30
AFDE 0.00 0.00 0.00
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Fig. 2: Comparison of the evolution process between
AEDE and classic DE on f,

except classic DE, SaDE and ProDE are better in f; and
CDE is better in f; and f,. Thus, it can be concluded that
AEDE 18 very competitive.

CONCLUSION

An efficient DE algorithm for function optumization is
proposed in this paper. The simulations and comparisons
with several state-of-the-art DE variants on mne
benchmark functions demonstrate that the new algorithm
can achive better balance between exploration and
exploitation by multi-stratey  differential mutation
mechanism and promises competitive performance not
only in convergence speed but also mn selution quality.
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