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Abstract: Tn this study, we are concerned with controlling Hopf bifurcation in a dual model of Internet

congestion control algorithms. The stability of this system depends on a communication delay parameter, and

Hopf bifurcation occurs when the communication delay passes through a critical value. Comparing with

previous work, a time-delayed feedback method is proposed to postpone the onset of undesired Hopf

bifurcation and improve stability of the dual model. Theoretical analysis and munerical simulation are provided

to verify the effectiveness of our method.
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INTRODUCTION

Nowadays, Internet congestion control algorithms
model have attracted considerable attention. As we know,
congestion 1s an unavoldable phenomenon i the
network, which may induce the loss of packets and the
mncreasing of delay. So the stability of network congestion
control plays a key role in the Internet congestion control
system. When the congestion control system loses its
stability, it may cause some dynamic behavior such as
bifurcation and chaos, which has been intensively
studied in recent years (Van Gorder and Choudhwy,
2011; Ding et al., 2009, Liu et al., 2011).

In reality, the complex dynamic behaviors often
degrade the performance of networks. Hence, there are a
lot of methods to delay or even avoid this kind of
behaviors. For instance, Guo et al. (2008) used a dynamic
delayed feedback controller for the second-order Internet
congestion control system. Ding et al. (2008) presented a
hybrid control of bifurcation and chaos method in
stroboscopic model of Internet congestion control
system. There are many other methods (Nguyen and
Hong, 2012; Liu et al., 2012).

The rest of the article is orgamzed as follows. In
Sec. 2, we introduce a time-delayed feedback method in
the fair dual model of Internet congestion control system.
Sec. 3 is devoted to the direction and stability analysis of
the Hopf bifurcation on the system with time-delayed

feedback control. Numerical examples to venfy the

theoretic analysis are given in Sec. 4. The last section
gives a brief conclusion.

EXISTENCE OF HOPF BIFURCATION OF SYSTEM
WITH CONTROL

The dynamical representation of a dual congestion
control system is as follows:

p(ty=kp()(x(t - T)—c) (1

where, x (t) = { (p (1)) 1s a nonnegative continuous, strictly
decreasing demand function and has at least third-order
continuous derivatives. The scalar ¢ is the capacity of the
bottleneck link and the variable p 1s the price at the link. k
is a gain parameter.

We add a time-delayed force h (p(t)-p (t-1)) to the
model (1) and then get the following controlled system:

Pty =kp(t)(x(t — 1) — ) + h(p(t) — p(t — ) (2)

where, the feedback gain h 13 negative real number. It 1s
obvious that the controlled system has the same
equilibrium point as the original model (1).

The initial condition of Eq. 2 is specified by a
real-valued continuous function:

p(s)=0(s), se[-1,0]
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Let p* be an equilibrium point of (2). Then p* satisfy:

x(p*)=c 3)

Define u (t) = p (t)-p* and take a Taylor expansion of
Eq. 2 including the linear, quadratic and cubic terms, we
obtain:

()= hutt) +buit 1) +b u(thu(t-7)+

bsuz(tft)+b8u(t)u2(tf‘c)+ (4

b9u3(t—‘t)+0(u4)
Where:

PN
by =kp*x'(p*)~bib, = kx(p®)

_1 o B _1 LI
by =S kp x'(p*).bg = Zkx"(p*).

S TP
bgfgkp x"{p*)

The linearized equation of Eq. 4 is:
a{t) = hu(t)+b,u(t -1 (3)
and its characteristic equation is:
A=h-b,e =0 (6)

By means of simple analysis, we get:

* Corollary 1: When the communication delay T is
smaller than the critical value 1, = -w/(2b), the
equilibrium point p* of system (1) 1s asymptotically
stable. When the delay T passes through T, there 18
a Hopt bifurcation of system (1) at its equilibrium
point p*

STABILITY AND DIRECTION OF BIFURCATING
PERIODIC SOLUTIONS

In this section, we determinate the direction of the
bifircation and the stability of bifurcating periodic
solutions of controlled system (2).

We use the similar method in the study by Ding et al.
(2009), the main results are as follows:

*  Theorem 1: For controlled system (2), the following
results hold:

*  p, determines the direction of the Hopf bifiwcation. If
=0 (<0), the Hopf bifurcation is supercritical

(subcritical) and the bifurcating periodic solutions
exist for T=1, (1<T,)

s [, determines the stability of the bifurcating periodic
solution. If PB,> 0 (>0), the bifurcating periodic
solutions are stable (unstable)

» T, determines the period of the bifircating periodic
solution. If T, = 0 (<0), the period increases

(decreases)
Where:
i 2 1 2 851
Cl(o)’ﬁ[gzoglfz‘gn‘ 75‘302‘ }T
el
! =" Reano) (7
Tm {cl(o)} + 11, Tm 210)
2 ©

0
B, - 2Re{cl(0)}

Here C, (0) is the Lyapunov ccefficient, and g,;. g,,,
Zop &gy, are defined by:

89 = 2B (b, exp(~ieyT) + bs exp(-i2ey )
&= E[b4 (exp(ifﬂut) + ‘3)@’(*10001))4r stJ

81> = 2B(b, expient) + by exp(izoy )
Wy (0)
2

1 = 2B[b,W,, @expi-iaym) + 2 expliyr) (&)

W (-t + —quz(—‘l:)

+b; (ZWH(—‘I:)exp(—i(qJ‘l:) + Wy (—‘l:)exp(imo‘l:))
+b, (exp(—i2eyt) + 2) + 3b, exp(—ieyt)

: @)

T 14D, Texplicy, )

We still need the values of W, (8)and W, (6) for
Oc[-1, 0

wmwh—iimmumm@y

%H(D) exp(—ioy, 0)+ E, exp{i2cy,0)
& .
W, (8)=""-q(0 0)—
11(6) ey q(0) exp(i63,6)
8y

- q(0) exp(—ioy ) + E,
103y

Where:
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— (Dl
By b, exp(—iZmyT) — i2ay, (10)
E, = e,
h+b,
NUMERICAL SIMULATIONS

In this section, we consider the fair dual which
give a proportionally fair resource allocation,ie., x
(= 1/p(t).

Let the link capacity 15 1.25 Mbps and the time umit 1s
40 ms. If the packet sizes are 1000 bytes each, the link
capacity can be expressed as ¢ = 50 packets per time unit.
In addition, let the gain parameter k =0.1.

We first choose h = 0. By direct calculation we can
get:

p*=002, ey, =05, 1, =3.1416
Wy = 5239.2,T, = 2125, B, = -758.38

The dynamic behavior of the uncontrolled model (1)
15 illustrated m Fig. 1-3. From Corollary 1, it is
obvious that when 1<, trajectories converge to the
equilibrium point (Fig. 1), while as T is increased to
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Fig. 1. Waveform plot and phase

uncontrolled system (1) with T =3

portrait  of

pass T, p* loses its stability and a Hopf bifurcation
occurs (Fig. 2 and 3). Since, [,<0, the periodic orbits are
stable. As p,>0, the Hopf bifurcation is supercritical and
the bifircation periodic solutions exist when t>1,. The
period of the periodic solutions increases as T mcreases
due to T,>0 (compare Fig. 2 and 3).

Now we consider the problem of controlling the
Hopf bifurcation in system (1). By choosing h = -0.1, we
obtain:

p*=0.02, @, =0.3873, 1,=4.7082
1L, = 27606, T, = 5572.9, B, = -1508.9

Note that the controlled system (2) has the same
equilibrium point as that of the original system (1), but the
critical value T, increases from 3.1416 to 4.7082, implying
that the onset of Hopf bifircation 15 delayed. It 15 seen
from Fig. 4 and 5 that when T = 3.4, the controlled system
(2) converges to the equilibriuni point p*. When T passes
the critical value t, = 4.7082, a Hopf bifurcation occurs.

The relationship between the critical value T, and the
control feedback gain h is shown in Fig. 6. From this
figure we know that when decreasing h, the critical value
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Fig. 22 Waveform plot and phase portrait of

uncontrolled system (1) witht=3.2
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Fig. 3(a-b) Waveform plot and phase portrait of
uncontrolled system (1) with T = 3.4
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Fig. 4(a-b) Waveform plot and phase portrait of
controlled system (2) with 1 = 3.4 and h =-0.1
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Fig. 5(a-b): Waveform plot and phase portrait of
controlled system (2) with ©t = 4.8 and
h=-01
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Fig. 6: Relationship between t, with h

increases, therefore we can get a larger stability
range of the system. For example, by choosing
h = -0.15, the critical value 1, = 6.3679. In detail, we
choose T = 5 and h = -0.15. The controlled system (2)
converges to the equilibrium point, as
Fig. 7.

shown m
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Fig. 7(a-b). Waveform plot and phase portrait of
controlled system (2) witht1=52andh=-015

CONCLUSION

A fair dual model of Internet congestion control
system with a time-delayed feedback controller has been
studied in this study. The system loses stability and a
Hopf bifurcation occurs when the delay passes a critical
value. Tt has been shown that the time-delayed feedback
controller can effectively control Hopf bifurcation.
Numerical simulations have verified the validity of this
control method.
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