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Abstract: Tn order to improve the accuracy of inversion Particle Size Distribution (PSD) in the Photon
Correlation Spectroscopy (PCS) technology, considering non-negative characteristic of PSD, based on
Tikhonov regularization method, two non-negative constraint methods of trust-region (Trust) and Interior Point
Newton (IPN) are compared in this study. Combimming characteristics of two methods, an inversion method of
Trust-IPN-Tikhonov is proposed. This method inherits the advantages of the Trust-Tikhonov and TPN-
Tikhonov. The inversion results of simulation data and experimental data demonstrate that Trust-TPN-Tikhonov
has smaller peak error, relative error and narrower distribution width than IPN-Tikhonov, compared with the
Trust-Tikhonov, Trust-IPN-Tikhonov has not only smaller peak error and relative error but also better
smoothness. All in all, Trust-TPN-Tikhonov has higher accuracy, better smoothness and is more consistent with

the true distribution.
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INTRODUCTION effective approaches (Liu, 2005). So,
regularization method may be use for PCS mversion. To
Photon comrelation spectroscopy (PCS, 1s also  further improve inversion accuracy,

called dynamic light scattering) technology has
become an effective method for measuring sub-micron
and nano-particle size (Cheng et @l., 2009) which measures
the time-averaged Autocorrelation Function (ACF) of the
intensity fluctuations scattered by the investigated
sample and obtam the information on Particle Size
Distribution (PSD). However, obtaining PSD from
measured ACF needs mvert a first-kind Fredholm
integration equation which is a high ill-posedness. The
measurement data with small noises causes large
deviation or mstability of the solution. Therefore, solving
of PSD becomes the difficulty of PCS technology. For this
problem, numerous approaches have been proposed,
such as  Cumulants method  (Koppel, 1972),
CONTIN method (Provencher, 1982), NNLS method
(Morrison et al., 1985) and more recently developed the
neural network approach (Gugliotta et al., 2009) and the
genetic algorithm (L1, 2008). However, these methods have
some limitations of semsitivity to noise and lower
accuracy. So far, the inverse problem 15 still current
research focus. In practice, for solving of ill-posed
equation, Tikhonov regularization method is one of most

considering
non-negativity of PSD, the solution is imposed by
non-negative constraint in the solution process. The
solution will be limited to a relatively small area.
Accordingly, inversion PSD can be improved (Roig and
Alessandrini, 2006). Tn mathematics, non-negative
constramnt methods have numerous. Among them, the
Trust-region (Coleman and Li, 1996) is a non-negative
constraint method which 15 widely used for the field of
engineering. When this method is used for Tikhonov
regularization inversion, relative error of its inversion PSD
1s smaller. However, its smoothness i1s sometimes worse
(Wang et al., 2012). Interior Point Newton method (IPN)
(Bellavia et al., 2006) is also a non-negative constraint
method. When this method uses for the PCS
inversion, its mversion PSD has good smoothness,
but its relative emor 1s larger. Integrating the
characteristics of the two methods, in PCS technology, a
non-negative  Tikhonov  regularization  inversion
combining trust-region with interior point Newton
{Trust-IPN-Tikhonov) 1s proposed in this study. Inversion
results of this method have higher accuracy and better
smoothness.
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TIKHONOV REGULARIZATION INVERSION
PRINCIPLES OF PCS

For the light field of the Gaussian distribution, ACF
of scattered light intensity is given by a Siegert
relationship. For the polydisperse particles, the normalized
ACF of scattered light ntensity 1s expressed as:

g(t) = [ G(Tyexp(~2To)dl" ["G{THdr = 1 ()

where, T is the sampling time, I'is the decay width, G(I") is
normalized distribution function of the decay width. In
Eq. 1, the relationship of decay width and the particle size
is as follow:

I'=Dqg* q= dm sin(g), D _ kT (2)
A 2 3mnd

0
where is diffusion coefficient, ¢ is the scattering wave
vector, nis the refractive index of the solvent, A, is the
wavelength of the incident hight in vacuum, 0 1s the
scattering angle, k; 1s the Boltzman constant, T 1s
absolute temperature, 1 is solvent viscosity and d is the
diameter of equivalent spherical particles. In theory, we
can mnvert G(I") from measured g(t), G(I") 1s retrieval PSD.
In the practical solution, Eq. 1 1s discretized as:

Ax=b (3)

where, elements of matrix b, x and A are by = g(1,), x, = G(I)
and a, = exp(-2I'T;), respectively. Tikhonov regularization
solves least squares solution of Eq. 3 by following
minimum problem.

min {Jax — bf} + 2*(Lx - x, )} )

where, L is umt matrix, x, is initial sclution and A is the
regularization parameter.

When x, = 0, considering the non- negativity of PSD,
Eq. 4 can also be changed into the following LS problem.

mal [} 7]

st x=0

2

}minf(x)|AxB|z (5)

2

Choosing the appropriate regularization parameter, the
PSD can be solved. The choice of regularization parameter
uses (Generalized Cross-Validation (GCV) criterion
(Golub et al., 1979) in this study. This criterion can be
expressed as:

-t ©)
[trace(T— AATF

where, a' is a matrix which satisfies x, = ab, x, is
regularized solution and trace represents the matrix trace.

NON-NEGATIVE TIKHONOV REGULARIZATION
INVERSION COMBINING TRUST-REGION
WITH IPN

Non-negative Tikhonov  regularization inversion
with Trust-region (Trust-Tikhonov): Trust-region
{Coleman and Li, 1996) is a large-scale bound constrained
optimization algorithm which uses trust region and interior
point methods to solve the boundary constrained

quadratic programming problems of Eq. 7 or &

min{f(x)=CTx+%xTHx:1< X< 11} (M
x:0

miun{HAx—B”: l<x< 11} (8)

Relation of Eq. 7 and 8 is H = ATA, ¢ = -ATY. Assuming
g(x) = VI(x) = Hx+tc, defining D = D(x), D(x) is a diagonal
matrix with 7" diagonal component equal to v ,(x)|'".

The local solution to Eq. 8 is the solution of the
nonlinear system:

D*(x)g(x) =0 (9)

Assuming x'is the local minimum value of Eq. 7 and Eq. &,
if a feasible point x is sufficiently close to x', then the
Newton step S"(x) can be defined as following system:

8" (x) = (D'H + JD*) 'D (10)

where, Df = Df (x) = diag(|g)) . Bach diagonal element of the
diagonal Jacobian matrix T is defined as follows:

1 v,=x,—-u, or v,=x,—-1
" |0 otherwise

In each iteration, we maintain strict feasibility
l<x*<u, 8 can be solve from following equation:
M,5 =D.g, an
where, M, =D,H,D, +1,D¢

Setting s, =D, , then according to the followmg
iteration rule, we can estimate x:
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¥ =x" + o8y (12)

where, o, =} ) -5 & <% D] % is a positive

constant.

The above procedure is the approach of finding a
local minimum. Using two-dimensional subspace
decomposition technique, this approach can be extended
to a global method and global optimal value can be
solved Specific process can be found in the literature
(Coleman and Li, 1996).

Non-negative Tikhonov regularization inversion with
IPN (IPN-Tikhonov): IPN method (Bellavia et al., 2006)
solves the NNLS problem by searching the solution
satisfying the Karush-Kuhn-Tucker (KKT) conditions.

The solution of Eq. 5 is equivalent to the non-negative
solution of the following nonlinear equations:

D(x)g(x)="0 (13
where:
g(x)= VI(x) = A" (Ax - B), D(x) = diag(d, (x),---d, (x)),x 2 0

4.0 {xi g,(x)=20

1 otherwise

Applying the Newton method to Eq. 13, the kth iterative
step can be expressed as:

(D, (X)A"A+E, (x))p=-D,(x)g, (x) (14
where, E, (x)=diag{e (x),---e, (x)}:

g(x) 0=g(x)<x; or g(xf>X
€ (X) =
0 otherwise

for 1=s=2 .
If the solution 1s degenerate, the matrx
D, (x)ATA+E,(x) may be singular. To avoid this case,
Eq. 14 can be changed into the following form:
W, (0D, (XM, (0p = - W, (x)D, (g, (x) (1)
Where:
M, (x)= A"A+ D, (x)"E,(x). W, (x) = diag{w, (x),-- W, (x)}

W, (x) = (d; (). e, (x))”

for x=0.
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Fig. 1: Inversion PSD of IPN-Tikhonov
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Fig. 2: Inversion PSD of Trust-Tikhonov

Table 1: Inversion data of IPN-Tikhonov and Trust-Tikhonov

Method Peak value/nm  Peak value error (%6) Relative error
IPN- Tikhonov 143.5, 597.4 0,4.67 0.6199
Trust- Tikhonov 143.5, 561.8 0,1.56 0.3861

Equation 15 can be solved by LSQR method (Paige
and Saunders, 1982). Specific process can be found in the
literature (Bellavia et ai., 2006).

In order to venfy the effect of the above two non-
negative methods, simulation ACF of bimodal
distribution particle with noise level 0.001 is inverted by
two methods. The simulation initial distribution is
Johnsor’s SB function (Yu and Standish, 1990). The
corresponding parameters are shown as follows:
0,=-220=191,=320,=15 o =700 nm and ¢, =
100 nm.The simulation experiment condition is as follows:
the wavelength of incident beam 1s 632.8nm, the refractive
index of scattering medium 1s 1.331, scattering angle 1s
90°, temperature is 257 Botlzman constant is 1.3807x10%
T+K ™" and the viscosity coefficient of water is 0.89x10 7
Ne+S«K'. When the inversion initial value is 0, the
inversion results of above two methods are shown in
Fig. 1 and 2. In the table, relative error =|x - XMWH2/ oeon |,

From Fig. 1 and 2 and Table 1, we can see that,
compared to IPN, inversion PSD smoothness of Trust is
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poorer. But the peak value error and relative error of its
mversion PSD are smaller and its mversion PSD 1s the
closer to the theoretical distribution. On the contrary,
using IPN, the peak value error and relative error of its
inversion PSD are bigger. Besides, broadening of two
modals of its mversion PSD is more serious. It means that
mversion PSD of IPN is poorly agrees with theoretical
distribution. However, mversion PSD smoothness of IPN
1s better.

Trust-IPN-Tikhonov inversion: For PCS inversion the
inversion PSD should have high accuracy and good
smoothness. From the above analysis, we can know that
mversion PSD of Trust has higher accuracy and poorer
smoothness, while inversion PSD of IPN has better
smoothness and poorer accuracy. Therefore, in order to
get better inversion PSD, we combine the advantages of
the Trust and IPN. A hybrid Trust-IPN-Tikhonov which
combines Trust with IPN 1s proposed in this
study. Firstly, this method inverts the PSD by using
IPN-Tikhonov, then, the mversion result of IPN-Tikhonov

Table 2: Inversion data of unimodal particles in the different noise levels

is as the initial value and uses for inversion of
Trust-Tikhenov. Thus, the inversion of Trust-Tikhonov
is equivalent to the optimization near the optimal value.
Accordingly, smooth optimal solution can easily be
obtained.

In order to verify inversion results of Trust-IPN-
Tikhonov, using the Trust-Tikhonov, IPN-Tikhonov and
Trust-TPN-Tikhonov, respectively, simulation ACF with
noise levels 0.001 and 0.005 were mverted. Simulation
particles are unimodal distribution particle of 200~550 nm
and bimodal distribution particle of 50600 nm.
Among them, the unimodal particles share parameters
of Johnsons SB u =05, 0 1.1, ¢, = 550 nm
and ¢,,.= 200 nm, the bimodal particles utilized the sum of

two Johnson’s SB functions of equal intensity quotients,

sharing parameters v, = 3.6,0,=2.0,u,=-23,0,=1.9,
e = 600 nm and e, = 50 nm. Simulation experiment
conditions are same as above. In the mversion, the
inversion imtial values of three methods are 0. The
inversion results and data of three methods are shown in
Fig. 3-4 and Table 2, 3.

Trust-Tikhonov IPN-Tikhonov Trust-IPN-Tikhonov
Noise Peak Peak value  Relative Peak Peak value Relative Peak Peak value Relative
levels Value/nm error % ermror Value/nm ermror % Error Value/nm Error % Error
0.001 322.86 4.15 0.1214 322.86 4.15 0.5209 318.57 2.76 0.0806
0.005 318.57 2.76 0.1539 331.43 6.91 0.5945 318.57 2.76 0.0826
Table 3: Inversion data of bimodal particles in the different noise levels
Trust-Tikhonov IPN-Tikhonov Trust-IPN-Tikhonov
Noise Peak Peak value  Relative Peak Peak value Relative Peak Peak value Relative
levels Value/nm error %0 emror Value/mm emror %o Error Value/nm Error % Error
0.001 110.84 4.57 0.2714 110.84 4.57 0.5434 116.15 0 0.2577
477.07 2.18 503.61 3.26 477.07 2.18
0.005 116.15 0 0.2116 116.15 0 0.5401 116.15 0 0.2004
461.15 5.44 455.84 6.53 461.15 544
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Fig. 3(a-b): Inversion PSD of ummodal particles at different noise levels (a) 0.001 and (b) 0.005
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As shown in Fig. 3-4, Table 2, 3, compared with the
Trust-Tikhonov, Trust-IPN-Tikhonov can reduce the peak
error, relative error of inversion PSD in different degrees,
urmodal distribution particle of 200--550 nm and bimoedal
distribution particle of 50~-600 nm at most can improve the
peak error and relative error of 1.39%, 0.0713 and 4.57%,
0.0137, respectively, besides, smoothness of its inversion
PSD has clearly improved, it means that the inversion PSD
of Trust-IPN-Tikhonov 1s better agreement with the
theoretical PSD. Compared with the TPN-Tikhonov, for
urmodal distribution particle of 200--550nm and bimoedal
distribution particle of 50~600nm, Trust-TPN- Tikhonov
can umprove the peak value error and the relative error of
mversicen PSD of 4.15%, 0.5119 and 4.57%, 0.3397,
respectively and its inversion PSD is significantly
narrower and more agree with the theoretical PSD.
Therefore, we can observe that Trust-IPN-Tikhonov
can combine the advantages of Trust-Tikhonov and
IPN-Tikhonov to mvert PSD. At the noise level with
0.001and 0.005, Trust-TPN-Tikhonov can get inversion
results which are more agree with the theory distribution.

0.045 T T
(a) ——Theory
0.0401 —=—Trust-IPN-Tikhonov [
—*—Trust- Tikhonov
0.035[ —o—| PN-Tikhonov
0.030
@ 0.025

0.0201
0.015
0.010
0.005

300 400 51
Particle diameter (nm)

EXPERIMENT DATA INVERSION

ACF of measured particles is obtained by PCS
system, the sample particles are the standard polystyrene
latex particles which are unimodal distribution particles
with average particle diameter 300 nm and bimodal
distribution particles with average particle diameter 60 nm
and 300 nm, scattering angle is 90°, experiment medium is
water, the experiment temperature 1s 25°C. The measured
ACF is inverted by above three methods. The inversion
results and data are shown in Fig. 5 and Table 4. The
inversion initial values of three methods are O.

From Fig. 5 and Table 4, we can be seery for
umimodal distribution particle, the peak value errors
of Trust-Tikhonov and Trust-TPN-Tikhonov are
1.03%, but the of Trust-IPN-Tikhonov
is obviously superior to that of Trust-Tikhonov, for

smoothness

the bimodal distribution of particles, compared with the
Trust-Tikhonov, mversion PSD  of Trust-IPN-Tikhonov
has better smoothness and its peak value error improves
1.28%. Compared with IPN-Tikhonov, for ummodal and

——Theory
—&—Trust-I PN-Tikhonov ]
——Trust- Tikhonov
—o—{ PN-Tikhonov

400 500 700
Particle diameter (nm)

Fig. 4(a-b): Inversion PSD of bimodal particles at different noise levels (a) 0.001 (b) 0.005
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Fig. 5(a-b): Inversion PSD of experument particles (a) 300 nm and (b) 60 and 300 nm
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Table 4: Tnversion data of experiment particles

300 nm 60 and 300 nm
Method Peak value/nm Peak value emror (%) Peak value/nm Peak value error (%)
Trust- Tikhonov 296.92 1.03 58.58, 300.40 2.37,0.13
IPN- Tikhonov 290.76 3.08 54.74,327.27 8.77,9.09
Trust-IPN- Tikhonov 296.92 1.03 58.58, 304.24 2.37,1.41

bimodal distribution particle, peak value errors of
Trust-TPN-Tikhonov’s inversion PSD is smaller and
umprove by 2.06 and 7.68%, respectively. Therefore, from
the analysis of the measured particles, we can get the
conclusions which are the same as the simulation data.

CONCLUSION

For the ill-posed inversion problem of PCS,
considering the nonnegative of PSD, this study compared
the nonnegative constraint features of Trust-Tikhonov
and IPN-Tikhonov, combimng with the respective
advantages of two methods, Trust-TPN-Tikhonov is put
forward in this study. This method inherits the advantage
of Trust-Tikhonov and IPN-Tikhonov. Using above three
methods, simulation data and experimental data were
inverted. The inversion results demonstrate that inversion
PSD of Trust-IPN-Tikhonov has higher accuracy and
better smoothness, 1s more consistent with the true
distribution.
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