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Abstract: Nowadays, online social network data are being increasingly published to third parties. Tt has been shown
that individually sensitive information cen be recovered from the released data and several anonymization
techmiques have been proposed. However, most of these defenses have focused on “one-time™ releases and do not
take into account the re-publication of dynamic social network data. Re-publishing data periedically is a natural
result of social network evolution and an emerging requirement of dynamic social network analysis. In this paper,
we show that by utilizing correlations between sequential releases, the adversary can achieve high precision in de-
anonymization of the released data, suppressing the uncertainty of re-identifying each release separately and
synthesizing the results afterwards. Besides, we combine structural knowledge with node attributes to compromise
graph modification based defenses. With experiments on real data, this work is the first to demonstrate feasibility
of de-anonymizing dynamic social networks and should arouse concemn for future works on privacy preservation

n social network data publishing.
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INTRODUCTION

Over the past few years, the rise of online social
netwaorks in popularity has produced large quantities of
data and attracted dramatic interest from the literature.
While social network data are valuable to sociologists,
economists, data-mining researchers and many others,
their containing sensitive information of individuals have
aroused serious privacy concerns. Recent studies have
shown that network structure can be used to re-identify
individuals from the released data. For example, in
(Backstrom et al., 2007), individuals are re-identified from
the released network owing to their unique connection
patterns to an embedded subgraph that the adversary is
aware of, and m (Narayanan and Shmatikov, 2009),
identities of users are exposed because of their alike
network structure between the released network and the
adversary’s auxiliary network.

These existing attacks all use some sort of
background knowledge to map from individuals with
known 1dentities to anonymized nodes in the released
network. For example, in (Narayanan and Shmatikov,
2009), the adversary exploits an external, auxiliary network
that overlaps with the released network as its background
knowledge to re-identify nodes.
identification of anonymized nodes would expose
potentially sensitive formation (e.g. attributes,
relationships) of them, breaching their privacy. However,
1n practice, the lack of ground truth (i.e. the true mapping
between the adversary’s knowledge and the released

Successful  re-

network) often lowers down the reliability of re-
identification result.

As  social network subsequent
snapshots of the same network are re-published for
evolutionary and dynamic analysis, the impact of lacking
ground truth becomes more serious. In appearance, re-
publication of the same network could provide a chance
of breaching more to the adversary, who just needs to re-
identify each release separately and add up the results.
However, in contrast to this intuition, if the adversary 1s
to synthesize results with false mappings, it will end up
with a combination in which nodes representing different
individuals are mapped to be the same, and/or nodes
representing the same individual are mapped to be
different.

As an example, we assume that the adversary tried to
map Alice from its background knowledge, S, to two
successively released snapshots, S, and S, and the
ground truth to be {Alice, a, u}, i.e., Alice was anonymized
tobenode ain S, andu in 3, Table 1 shows the result of
re-identifying Alice in 3, and S, separately, in which P(x)

evolves and

indicates the possibility that Alice maps to node x. We
can notice from this table that Alice was falsely mapped
to v in $,, resulting in incorrect combination {Alice, a, v}.
However, if the adversary utillized the correlations

Table 1: De-anony mizing releases separately

5 S, S Result
Alice Pla)=0.6 Pan =04 P(a, v)=0.36
Pb)=0.4 P(w)=0.6 {Alice, a, v}

Corresponding Author: Xuan Ding, School of Software, Tsinghua University, Beijing, 100084, China
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between S, and S; and found out that, for example, there
is high confidence that a and u represent the same
individual, it would correctly reveal {Alice, a, u) with high
possibility.

Besides this ambiguity brought by dynamics, another
limitation of the existing attacks is that they exploit only
structural knowledge for re-identification. In fact, ever
since the attack of (Backstrom et af., 2007), many defenses
have been proposed to protect anonymized nodes from
being re-identified by wvarious kinds of structural
knowledge (Zhou and Pe1, 2008). These methods ensure
that adversaries holding only structural knowledge
cannot re-identify any node with a probability higher than
1%k.

To address these challenges, first develop a
technique called threading to utilize correlations between
releases. Instead of de-anonymizing each release
separately and synthesizing the resulting mappings
afterwards, we de-anonymize all releases sumultaneously
and ensure unambiguity of the result all through the
process. Secondly, to compromise recent defenses, we
exploit both structural knowledge and node attributes to
re-identify anonymized nodes. Both techmques improve
the reliability of result, as they produce more accurate
mappings between the adversary’ knowledge and the
released networks.

In brief, we make the following contributions:

¢ This is the first work to de-anonymize dynamic social
network releases. Feasibility of owr method is
demonstrated with real data

*  Although primitive and mtuitive, this is the first
attempt to combine structural knowledge with node
attributes to de-anonymize social network data

¢ We proposed the concept of threading to associate
time-varying sets of eclements. We believe this
concept can help in solving some analogous
problems

RELATED WORK

Social network de-anonymization: Backstrom etal. are
among the first to demonstrate feasibility of de-
anonymizing social network data (Backstrom et af., 2007).
They proposed a family of attacks, i.e., the active, the
passive and the semi-passive attacks, to breach edge
privacy of a targeted group of individuals. All of these
attacks share the same the philosophy: within the released
network, the adversary first locates a seed network
(denoted as H) that it has detailed degree and internal
structure knowledge of and, then, by utihzing knowledge
of the unique connection patterns between H and the

targets, the adversary re-identifies each target and learns
whether edges exist or not between each pair of them.

The attacks of (Backstrom et al., 2007) are limited to
privacy breach of only a small set of targets. Basing on
this small, seed mapping as a starting point,
Narayanan et al. developed an algorithm to extend the
seed mapping iteratively to a larger mapping by utilizing
knowledge of an external, auxiliary network that overlaps
with the released network on more nodes in addition to
those mn A (Narayanan and Shmatikov, 2009). In each
iteration, the existing mapping (initially, the seed mapping)
15 extended to a number of neighbors according to
structural similarity and forms a larger mapping, which,
will be fed back to the next iteration if the convergence
criteria has not been met.

Hay et al. (2008) also described a series of structural
attacks, in which the adversary knows the local structure,
embedded subgraph, or connection patterns to network
hubs of the target. All of the above attacks are based on
structural knowledge only and are not specially designed
for de-anonymizing dynamic social network releases. As
we have already noted, the attack of (Narayanan and
Shmatikov, 2009) suffers from the ambiguity in combining
separate mappings. And although less ambiguous, the
attacks of (Backstrom et al., 2007) rely strongly on the
assumption that the internal structure of the seed network
stays exactly the same in anonymization, which can hardly
be the case under recent defenses. The same assumption
is  implicated in the seed identification stage in
Backstrom et af. (2007). In contrast, our method employs
the “threading” technique to deal with dynamics and
introduces node attributes into re-identification to loosen
the very assumption.

Another category of attacks rely more on node
attributes than on structural knowledge. Wondracek et al.
(2010}, present an attack that exploits group membership
information on  social networking sites for re-
identification. Specifically, it is shown that group
memberships of a user can serve as its “fingerprint” in the
data and be used to re-identify it or, at least, to reduce the
number of candidates. This attack has its similarity to that
of (Nerayanan and Shmatikov, 2008), m which an
anonymized dataset contaming movie ratings about
thousands of movies from 500,000 people is de-
anonymized under the fact that the possibility of two
individuals to have identical ratings on the same subset
of movies is extremely low.

In brief, both (Wondracek et al., 2010) and
(Narayanan and Shmatikov, 2008) are based on the high
dimensionality and sparsity of node attributes in certain
networks. While node attributes are also exploited for re-
identification in our algorithm, we make no assumptions
on distributions of them.

4883



Inform. Technol. J., 12 (19): 4882-4888, 2013

Social network anonymization: On defenses, existing
works have focused mostly on privacy-preservation of
“one-time” releases (Wu et al, 2010). Zhou et al.
categorized these works into clustering-based and graph
modification approaches (Zhou et al., 2008). Briefly, a
clustering-based method hides details of individuals by
clustering corresponding nodes and edges into super-
nodes and super-edges (Hay et af., 2008; Campan and
Truta, 2008, Bhagat et al, 2009), while a graph
modification method provides anonymity by medifying
nodes and edges to be less outstanding (Liu and Terzi,
2008, Zhou et al., 2008; Zou et al., 2009). There are also
other anonymization methods for “one-time” releases
(Wu et al, 2010). Due to space limitations, we refer
interested readers to (Zhou et al., 2008) and (Wu et al.,
2010) for more details.

Recently, the problem of anonymizing periodically re-
published social network data to support dynamic
analysis has aroused interest 1in the literature.
Anonymization in such a setting 1s challenging, as an
adversary can collect historical information and use 1t for
re-identification. Zou et af. (2009), described a techmque
called ID generalization to handle this problem, in which
node IDs are replaced with ID sets (called generalized ID)
to enswe the number of candidates against structural
queries. To allow dynamic data analysis, this technique
preserves the original TD in generalized ID in all releases.
In our case, however, this just makes finding correlations
between releases more efficient.

MODEL AND DEFINITIONS

In this section we mtroduce notations, definitions
and preliminary facts that are used throughout this paper.
Particularly, we propose “threading™, one of the most
umportant concepts of this paper and a number of useful
facts relating to it.

Dynamic social network: A dynamic social network is a
social network that varies with time. A snapshot of a
dynamic social network at a certain point in time, say t, is
represented with an attributed graph G, = (V,, E,, X, Y,),
where V, i1s a set of nodes representing participating
entities, E, = [V,]’ is a set of edges representing their
connections (e.g. relationships, interactions) and X, and
Y, are sets of attributes attached to nodes in V, and edges
m E, respectively.

This notation is mostly from (Narayanan and
Shmatikov, 2009), except that we take dynamics into
consideration and do not explicitly specify the graph to be
directed or undirected. Besides, we emphasize that the
graph representing a social network is attributed, which is

critical to our algorithm. For convenience, we adopt the
following conventions on attributes as well:

*  Given a node v € V, (an edge e € E, ), the notation
X [v] (Y [e]) represents the set of attributes attached
tov(e)

s given an attribute X € X, (Y € Y, ), the notation X[v]
(Y[e]) represents the value of the attribute X of v (Y
of e)

Sequential releases: With the above notation, a series of
n snapshots of a dynamic social network at time t,, t,,
t, are then represented with G,;, G, ..., Gy, or Gy, G,
for short if the context is clear.

After anonymization, a network G, is released as G, =
(V., B, X 'u {ID}, Y,). The released set of nodes V*
does not have to be a subset of Vt; and if not, we assume
that (V,*-V,) is a set of dummy nodes created only to
satisfy certain anonymity criteria (e.g. k-automorphism
(Zou et al., 2009)). The released set of edges E may not
be a subset of E, neither. In this case, (E*-E,) is assumed
to be a set of dummy edges. We denote the attribute
representing ancnymized 1dentifiers of nodes by ID,. For
convenience, we abbreviate D, [v] to v.ID, in the rest of
this paper; and if t is easily inferable from the context, we
omuit it and write v.ID for short.

Anonymized identifiers of the same entity in
sequential releases may or may not stay the same. If the
adopted anonymization method is not specially designed
to support dynamic analysis, it is normal to preserve
identifiers to allow such a purpose. In this case, there exist
strong correlations between releases that can be easily
exploited by an adversary. However, if dynamics is
specially handled, for example, if the ID generalization
technique (Zou et al, 2009) is used, anonymized
identifiers will vary and the correlations may be weakened.
We regard it as a key issue to captwe the various
possibilities that would emerge of anonymized identifiers
of the same entity. Let v, € V,," and v,, € V,,” be two nodes
representing the same entity in two releases G,,” and G,,".
With their anonymized identifiers, v,. ID and v,,. 1D, we
consider the following cases:

ey

G,

. n

»  Node identifiers are re-generated in each release and
v, ID and v, ID tend to be distinct

+  Node identifiers are retained for purpose of dynamic
analysis and v,;. ID = v, ID 18 guaranteed

¢+ Node identifiers are generalized for anonymity
(Zou et al, 2009) and v,,.ID and v,,.ID may not be the
same. However, v,. ID nv,ID # @ 1s guaranteed.
(Note that ID is a set of identifiers in this case)

Further, for simplicity and to focus on the main
objective of this work, ie. the de-anonymization of
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dynamic releases, we assume in our model that node
attributes are only samtized but not modified by any
means (e.g. perturbation, generalization). This indicates
that for any node attribute to release, it is either removed,
or reserved in the released network. Formally, we have Vv
e V., X[v] c X[v]. We argue that this assumption can be
removed by mending the matching strategy (Section 4),
but we choose to stick to it as it yields a more
concentrated algorithm. Edge attributes are not restricted
by this assumption.

Threat and privacy model: Similar to all the existing
attacks, we assume that the adversary has access to some
kind of background knowledge for re-identification.
Particularly, in our case, we assume the adversary to hold
an auxiliary network that overlaps with every targeted
release. This assumption 1s no stronger than that of
(Narayanan and Shmatikov, 2009) since all the releases are
inherently overlapped and an earlier crawled subgraph
from the targeted network is sufficient to serve the
purpose. We also assume that the adversary holds
detailed knowledge of a small set of targets (i.e. the seed
network), which can be used to re-identify them from each
release. The same assumption is adopted in
Backstrom et al (2007) and Narayanan and Shmatikov
(2009).

The purpose of de-anonymizing social network data
is to re-identify individuals and breach their privacy, i.e.,
revealing information such as sensitive attributes and
relationships that are not included in the background
knowledge. In a dynamic setting, dynamic privacy is also
considered. For example, a relationship establishment or
break up between two individuals may be exposed if they
are both re-identified.

Threading: As mentioned in Section 1, de-anonymizing
each release separately and synthesizing the results
afterwards do not de-anonymize the entire serials. In
contrast, it brings more ambiguity nto the final result and
makes each mapping more unreliable. We introduce the
concept of threading to formalize this problem.

Definition 1 (Thread/Threading Instance): Let 3, S, ...,
S.be n non-empty sets and e, e,, ..., e, be n elements from
eachset, ie. € S,1=1, 2,..., n. The sequence {e,, e,,..., &)
15 said to be an n-dimensional thread (or threading
mstance ) through S, S,, ..., S,.

Definition 2 (Threading): Let S,, S,, ..., S, be n non- empty
setsand T = (&, e,..,elj=1,2, .., m} beasetofm
threads through 5, S,,..., S, T 1s said to be a threading
through S, S, .., S, if and only if all of the m threads
are disjoint, ie Vi€ {1,2,...n},a be {1,2,.. m}, e=¢
=a=bh.

Table 2: Threading example

84 8, 8 Threading instance
Alice a u {Alice, a, u}

Bob b v {Bob, b, v}
Charlie c W {Charlie, ¢, w?}

Table 2 gives an example of threading, in which 51 =
{Alice, Bob, Charlie}, S,= {a, b, ¢} and S;= {u, v, w} are
three non-empty sets and t, = {Alice, a, u}, t,= {Bob, b, v},
t; = {Charlie, ¢, w} are disjoint threads through them. The
set T = {t,, t,, t;} is then a threading through 5, S, and S,

Definition 3 (Graph threading): Let G|, G,,.., G, be n
graphs and V,, V,, ..., V, be their corresponding sets of
nodes. T 1s said to be a graph threading through G, G, ...,
G,1f and only 1f T 1s a threading through V,, V,...., V..

Threading extends the concept of one-to-one
mapping (or mapping for short). However, we can always
split a threading into mappings. For example, the 3-
dimensional threading in Table 2 can be viewed to consist
of two mappings from S, to S, and from S to S, This
concept is captured by Definition 4 and used in
Algorithm 2.

Definition 4 (Induced Mapping): Let T = {{e/, e/... el }|j=
1, 2,.... m} be a threading through n non-empty sets ¥,
s nand £t {e)t - {e/} be a mapping from {e;} to {e,}
for some a, be {1, 2, ... n}, a = b fis said to be the
induced mapping of T from 3, to S, if and only if ] € {1,
2....,mi fle])=¢e

Algorithin 1: Seed Threading

Input: The seed network s and the released networks gy, g...., £,
Output: The seed threading t,,.

It~

2 foreach g in {g,, g,, ..., .} do

3 map s to g; and obtain mapping m;

4 foreach v in s.nodes do

S insert {v, m,(¥), my(v),..., m,(v)} into t,

O refum ty,

Algorithin 2: Threading expansion
Input: The auxiliary network aux, the released networks g;, g, ..., g,
and the seed threading t.
Output: The expanded threading t,,
by -~ b, gy — aUX, convergence - false
While not convergence do
Convergence - true
Foreach vy in gy.nodes and not in t,.mydo
fori-0Oton-1do
Vi - BestMatch (g, g, tu.Im, ¥)
if vi,; = None then
continue the outer loop with the
next v
9 v, - BestMatch (g, g5, t.,.mn, v,)
10 if v,y = vy then
11 insert {vy, vy, V4, ..., Vyrinto b,
12 convergence - false
13 retum t,,

00 ~1 O LA B b
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Theorem 1: Let 5, S,, ..., 5, be n non-empty sets and E,,
E,, ..., E, be nnon-empty subsets of each set, 1e. E, c E,
i=1,2,..,nIf|E|=|E|=..=|E]|and {f: E -F.} are (n-1)
mappings between each pair of E, and E,,, i=1, 2,..., (n-1),
letting £ = £, f = £,(6), then T = {{e, f;'(e). £;'(e), ...
£ ,'(e)e €E,} is a threading through S, S,, ..., S,.

Proof 1: Omitted due to space limitations.
DE-ANONYMIZATION

Our re-identification algorithm runs in a similar two-
stages manner to (Narayanan and Shmatikov, 2009). Tt
begins with the construction of a seed threading through
the adversary’s seed network (which is part of the
complete but less detailed, awxiliary network) and the
released networks. Once the seed threading 1s
constructed, the algorithm advances to the main,
threading expansion stage, in which the seed threading is
extended iteratively to its neighborhood to eventually a
large threading through the auxiliary and the released
networks. The details of the algorithm are as follows.

Seed threading: As mentioned earlier (Section 1),
exploiting only structwral knowledge is not sufficient to
re-identify nodes under recent defenses. Therefore, we
extended the algorithm of (Backstrom et al., 2007) and
(Narayanan and Shmatikov, 2009) to also exploit node
attributes i re-identification. Specifically, besides the
degree and internal structure tests, a third, attribute test
is performed to rule out candidates that are structurally
similar but with distinet attributes. This modification 1s
straightforward and, due to space limitations, we just omit
the details here.

Algorithm 3: BestMatch

Tnput: lgraph, rgraph, mapping, Inode.

Output: The node mode in rgraph that best matches the node Inode in
lgraph; or None if such a node does not exist

Foreach mode in rgraph.nodes do

Scores[mode] ~MatchingScore (Inode, mode)

Tf Eccentricity(scores) == theta then

Return mode with the maximum score

else

Retum None

[ RN S

With this new algorithm, we are able to locate the
seed nodes within each release and combine the resulting
mappings together to obtain the seed threading through
the seed network and the released networks. Note that the
combination here is reliable because re-identification of
seed nodes is assumed to be accurate (Section 3).
Algorithm 1 summarizes and describes this process. The
resulting t,, 1s a graph threading through s, g,, g,,.... 8.
And since s i3 a subgraph of aux, t, is also a graph
threading through aux, g,, g,,..., 8, (by Theorem 1).

Threading expansion: After the construction of seed
threading, we use it as a starting point to expand to large
threadings with the aid of the complete, auxiliary network.
The idea of expanding seed threading iteratively to its
neighborhood to obtain an eventual, large threading is
not new (Narayanan and Shmatikov, 2009). However, our
primary contribution here lies in the threading of multiple
networks simultaneously, emitting the ambiguity of re-
identifying each network separately, and lies in the
combinative exploitation of node attributes with structural
knowledge in re-identification, breaking more existing
defenses.

The expansion algorithm is given in Algorithm 2. It
takes as input the networks to thread, i.e. the auxiliary
network aux and the released networks g, g,,..., g, and the
seed threading t,; to expand. Note that t,,.m; denotes the
induced mapping from gito g, 1=0, 1, ..., (n-1)and tm,
1s the induced mapping from g, to g,. The expansion stops
when there is no new thread to be inserted into t,,.

Matching score computation: The procedure BestMatch
{(Algorithm 3) 1s the key for re-identification to succeed.
Taken as input two networks lgraph and rgraph, a
bijection mapping in between and a node lnode 1n lgraph,
this algorithm tries to find the node rnode in rgraph that
best matches lnode based on mapping.

As we exploit both structural knowledge and node
attributes for re-identification, computation of matching
score is divided into two parts accordingly. The structural
part, Ms, 1s calculated in the same way as (Narayanan and
Shmatikov, 2009). Let V_ be the set of Inode’s neighbors
that have mmages in mapping and V; be the set of Vs
images that are rnode’s neighbors, then:

1
MS= —_—
=T
And the attribute part, M., is calculated with:

_ ‘{X e X, |X[Inode]= X[rnode]}‘
]

a

Then the overall matching score 1s:

M =o-M,+(-M,

overall
where ¢ and P are weighting variables.

EXPERIMENTS

We used data crawled from Netease Microblog, one
of the top social networking sites in China, to evaluate our
algorithm. As shown in Table 3, Netease Microblog was
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Fig. 1: De-anonymization results on real data (from
Netease Microblog). (a) Separate vs. threading-
based attacks (b) Re-identification of different
release combinations and (¢) Effect of node
attributes

experiencing a rapid growth in users during Mar. 27th and
Apr. 16th in 2010, which makes it a good source of
dynamic data for our evaluation.

For simplicity, we extracted the 1-neighborhood of a
randomly selected node, v, from 3, as the adversary’s

Table 3: Data crawled firom netease microblog

No. Date Nodes Edges Av. deg
S1 2010-03-27 47,367 784,508 331
s82 2010-03-30 54,190 858,244 31.7
83 2010-04-02 4,002 977,889 30.6
84 2010-04-07 117,864 1,478,188 251
85 2010-04-11 161,267 1,894,840 23.5
806 2010-4-16 204,790 2,308,505 22.5

seed network and the 2-neighborhood to be the complete
auxiliary network (edges between nodes that are both not
v’s neighbors are removed). Sequential releases are
obtained by anonymizing the other snapshots, i.e. 5,to0 S;.

We first compared owr algorithm with (Narayanan
and Shmatikov, 2009) and summarize the results in Fig. 1a,
from which we can see clearly that de-anonymizing
releases separately (line “1,2” and “1,3™) and synthesizing
the results afterwards do lower down the reliability of
result significantly; and owr threading-based technique
can yield result of much higher precision. Second, we
evaluated our algorithm against different combinations of
releases, 1.e. S;and S, S,and S; and S, and S;, to validate
1ts general effectiveness and examine the affect of time to
re-identification. The results are shown in Fig. 1b. As we
can see, the algorithm vields better threading when the
releases are close in time (line “1,2,3”), especially when
they are close to the background knowledge (line “1,3,6”
vs. “1,4,5"). And unsurprisingly, the algorithm yields
result of high precision when the size of the seed network
is large. Figure 1¢ shows the effect of node attributes to
re-identification by comparing a zero and nonzero value of
& in matching score computation.

CONCLUSION

In this study, we demonstrated the feasibility of
utilizing correlations between sequential social network
releases to achieve high precision in de-anonymization of
the released data. We exploited both structural knowledge
and node attributes in ow algorithm to re-identify
anonymized nodes. This combination not only helps in
finding reliable correlations and leading to results of ugh
precision, but also compromises most existing graph
modification based defenses as they take only network
structure 1nto consideration. Real data experiments
showed the effectiveness and superiority of our method
compared to the existing attacks.
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