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Abstract: As the rapid development of cloud computing techniques, a large number of data centers have been
deployed recently. The power costs of data centers have become a practical issue and have attracted significant
attention. Existing works on green data center have focused on computer servers and cooling systems.
However, saving network energy also plays an important role on energy efficiency of data centers. In this
study, we formally define the Network Power Saving VM Placement Problem (NPS-VMPP), analyze and
highlight the resemblance between NPS-VMPP and a variant of Quadratic Assignment Problem (QAP) for
Fat-Tree topology data centers. Inspired by this observation, we propose an extended robust tabu search based
approach (eRTS) to optimize virtual machine placement and adopt a simple topology-aware heuristic to allocate
traffic flow so as to turn off as many unneeded network devices as possible. Experiment results demonstrate

the efficacy of this approach.
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INTRODUCTION

Cloud computing is now the propelling force for the
development and deployment of data centers that hold a
large number of computer servers and that support a
variety of online applications (e.g., Google) as well as
infrastructural services (e.g., Hadoop platform for big
data). However, the energy cost of data center is also
skyrocketing. It has been reported that data center power
usage in US doubled between year 2000 and 2006 to
nearly 61 billion kWh (1.5% of total US electricity
consumption) and is predicted to double again by 2011 to
more than 100 billion kWh (US Environmental Protection
Agency, 2007). The computer servers and cooling
systems account for about 70% of a data center’s total
power budget and most research efforts focus on making
them even more energy efficient In contrast, the
underlying network infrastructure, such as routers and
switches, takes up about 10-20% of energy bill and has
recelved little attention.

Conventional data centers usually employ a three-tier
topology proposed by Cisco as the common network
architecture. At the bottom level (known as the access
tier), servers are organized in racks and each server m a
rack connects to one Top-of-Rack (ToR) switche. Each
ToR switch connects to one (or more) switches at the
agpgregation tire and each aggregation switch connects

with multiple switches at the top level (known as the core
tier). As services scale up, poor scalability and
insufficient bandwidth inherent in three-tier topology
have motivated researchers to propose new data center
network architecture, e.g., Fat-Tree (Al-Fares et of,
2008), VL2 (Greenberg et al., 2009) and BCube (Guo et al.,
2009).

Recently, some works have focused on reducing the
power consumption of network elements in cloud data
centers. ElasticTree (Heller et of., 2010) consolidates
traffic flows m the data center network onto a small set of
switches and links such that unused network elements
can be tumed off for power saving. But ElasticTree
doesn't take VM placement into consideration. Some
works have studied VM placement for optimizing network
traffic in data centers. Meng et al. (2010) mvestigated
traffic-aware virtual machine placement in data center
networks. However, this work does not consider network
power optimization.

In this study, we solve the power-saving issue of
data center networks by exploring traffic-aware VM
placement and topology-aware traffic allocation strategy.
We formulate a topology independent optimization
problem (Network Power Saving VM Placement Problem,
NPS-VMPP) to minimize network power cost. To leverage
cheap commodity Ethernet switches and to simplify the
analysis and discussion, we mainly focus on data center
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network with the state-of-the-art Fat-Tree topology. By
transformmg NPS3-VMPP to a varlant of classical
Quadratic Assignment Problem (QAP), we are inspired to
exploit robust tabu search which 1s an efficient meta-
heuristic for QAP. So we propose an extended robust tabu
search (eRTS) based framework to mimimize energy bill
and verify its effectiveness with experiments.

PROBLEM FORMULATION

The data center network topology can be modeled as
a simple undirected graph G(V,E), where V 1s the set of
vertices and E is the set of edges. There are two types of
vertices in V: the physical machines (PM in abbreviation
and PMs are denoted by upper letter, e.g., I, I) N, the
network switches S and V = NUS. The edge (u, v)eE
represents a commurication link between a server u and
a switch v, or between a pair of switches u and v. The
bandwidth capacity of link (u, v) is denoted by c(u, v). S,
represents a set of nodes comnected to a switch u.
Services hosted by the data center demands a set of
virtual machines (VM in abbreviation and VMs are
denoted by lower letter, e.g., i, j) M. The traffic rate from
VM 1to ] is denoted by d,.

Let P, denote the power consumption of switch u and
Y, denote the binary decision variable indicating whether
switch u is powered on. We can formally define the
Network Power Saving VM Placement Problem
(NPS-VMPP) and denote it as Problem P for short in the
rest of the study. The objective of Network Power Saving
VM Placement Problem is to find a VM placement scheme
such that the power consumption of networking devices
can be minimized.

Problem P:

Minimize ¥ P, <Y,
ues

subject to the following constrains:
a(iy=1, n,(D)=i D
Vi,jEM,V(u,v)eE,fij(u,v)gd‘j (2)

YLIe N, V(u,vie E.f;(u.v) =d, 45, o)

Y,V = Y= Sy oy (3)

i Li=1

1 if > fu,vi=0

s ues 4
0 if > fu,v)=0

e,

We assume that some VM consolidation mechanism
(Nathu1 and Schwan, 2007) has already employed so that
the number of compact VMs is no larger than the number
of PMs, so the term VM 1n this study represent "compact,
virtual" VM. Moreover, we create dummy VMs that
consume no resource at all to make 1t possible to map
VMs and PMs on a one-to-one (1:1) basis. As a result, we
can define a mapping © from VM to PM:
[1,..4,...,....n]~[1,. .4, o, 0] and another mapping T
from PM to VM: [1,...1,....],...n]-[l,.. . .1....}....0].
Constraint 1 states that any virtual machine i must be
hosted by a physical server I = (1) and any physical
machine I only hosts one virtual machine i = 7.(I). £,(u, v)
and f,(u, v) represent the traffic flow on link(u,v) imposed
by the traffic between VM iand j (i.e,, d;) and between PM
[ and J, respectively. f{u, v) denotes the total traffic on link
(uv). Constraint (2) implies that the flow is splittable
among different links. Constraint 3 ensures that the total
traffic along each link must not exceed its bandwidth
capacity. Constraint 4 means that when all links
connecting to a switch are off, the switch is powered off,
otherwise, the switch 13 powered on.

ALGORITHM DESIGN FOR FAT-TREE TOPOLOGY

In Fat-Tree topology, all switching elements are
identical, enabling us to leverage cheap commodity
Ethernet switches to deliver scalable bandwidth for
large-scale clusters at significantly lower cost than
existing techniques. Fat-Tree topology, however, requires
more networking devices and thus consumes more and
may waste more, energy than other existing network
topologies. So in this study we analyze and solve the
energy saving for Fat-Tree topology. Notice that although
the analysis and algorithm given in this study are based
on Fat-Tree, the basic 1dea and designs can be applied to
data center with other hierarchical network topologies
{(e.g. 3-tier tree, VL2).

A k-ary Fat-Tree is built with k-port switches which
are divided into k pods, with k/2 access switches and k/2
aggregation switches in each pod. Each pod is connected
with k¥4 core switches and with k*/4 servers. Thus in
total, there are 5 k%4 switches that interconnect k’/4
servers. Figure 1 shows one such network with k = 4. The
meanings of the symbols used to describe Fat-Tree
scenario are given in Table 1.

We employ a simple topology-aware heuristic
(Heller et al., 2010) to allocate traffic flow to different link
on each switch. The number of active ToR switches is
defined as:

|STuR '|: Z Yu

uinor
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Fig. 1: Fat-Tree architecture with k = 4

Table 1: Key svmbols for Fat-Tree scenario and their descriptions
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Set of ToR, Aggregation and Core switches, respectively. Note that =5 | 8eer U8
No. of power-on ToR, Aggregation and Core switches, respectively.

Total traffic of ToR, Aggregation and Core switches, respectively. Notethat T, , > T, , o T, and Ty, = E d;

i

d"x(l)ﬂx(J)

The number of active aggregate switches in pod q
can be calculated according to Eq. 5, where ¢ denotes the
identical capacity for all the links in a Fat-Tree. So, the
total mumber of active aggregate switches 1s calculated by
Eq. 6. The total number of active Core switches derives
from Eq. 7. Consequently, the energy cost of data center
network can be derived from the number of active
switches:

' E
|SAg;_Pm(q) ‘: E[&’%]{Tﬁank(p) ’IC} (5)
|SAgg ": 22 |SAg57PUd(q) '|: Z Yu (6)
aell ) Vi
B n[ll-ak:;(]{T;m(q)/c}: >, (7
e[l X uedg

For Fat-Tree topology, the objective function of
problem P can be reformulated as problem P’.

Problem P’:

Minimize > P, xY,+ > P xY + > P xY, o

vl ueSpy velog,

Minimize| S, g '|+18,.. | +1 8. |

AgF

We also define problem Q (Meng et al., 2010).
Problem Q:

Minimize » d,C. 0

ij=lsn

where, Cy represents the number of switches on the
routing path from PM T to J. With such a definition, the
objective function 1s to mirumize the traffic sum perceived
by each switch. Obviously, problem @ falls into the
category of Quadratic Assignment Problem (QAP) in the
Koopmans-Beckmann form (Loiola et al., 2007) which is a
known NP-hard (Sahni and Gonzalez, 1976) problem.

For Fat-Tree topology, Ci*™** is calculated as Eq. 8
which implies the Eq. 9. Smce:

TRank: Z du

1=l n

so Ty, 18 a constant given a permutation T.

L
Fal-tree _ (8)
ST 2o 2 a8 =15
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Fal-lree
Z dqcn@)n@ = Rw:k + TPud + Tcun (9)

1,1,

Therefore, good solutions to Problem Q are also
good solutions to both Problem P° and P. Such
observation motivated us to adopt effective algorithms for
Problem Q to obtain high quality solutions to Problem P.

Although  various methods for solving QAP
(Problem Q in this study) have been proposed
(Lotola et al., 2007), there 1s a general agreement that
finding the optimality of QAP problems with size >15 is
practically impossible. However, there are some effective
meta hewristic algorithms for QAP problem, for example,
Robust Tabu Search (RTS) (Taillard, 1991). The
resemblance between NPS-VMPP (Problem P) and QAP
ingpired us to extend Robust Tabu Search to minimize
power consumption of data center network.

Any VM placement can be obtained after a serial of
transposition of two VMs, regardless of the initial
placement. If we randomly select two PMs, I and T and
exchange the VMs on them, random transpositions fall
mnto 3 different categories: intra-rack transposition, intra-
pod transposition and inter-pod transposition. Intra-rack
transposition, exchanging PM T and T within a rack, affects
neither mtemal (T';_,) nor external rack traffic (T%,_,). So,
we won't probe this type of permutation (Line 9-10). Intra-
pod transposition, exchanging PM I and PM T within a
pod, may rearrange internal rack traffic, external rack traffic
and internal pod traffic (T',,y), leaving external pod traffic
(T%5s) unchanged. Inter-pod transposition, exchanging
PM T and PM T from different pods, adjusts both internal
and external traffic of corresponding pods and racks.

Particularly, for an inter-pod transposition between
PM T and J, the alteration to external and intemal traffic for
the rack hosting I can be calculated by the following
equations:

E
ATRack(pr By~ Qrtymeery 2 ey

I'eN-Rack(| £ ) PeN-Rack( L)

2 dnT(IJnTU‘a -

d"r(l"J"T(J)
JreRack] 4 ), 7'l

'eRack( L[, 1"

dﬂr(l')ﬂrﬂ) N Z dﬂr(l)ﬂr(l"J

T'eRack(| 2 )1l

AT, éack(l “J) Z

I'eRack(| 21

The alteration to external and mternal traffic for the

pod hosting I can be calculated by the following
equations:

ATI L34

puqlip dﬂr(I‘Jﬂr(J) - dﬂr(Dﬂr(J‘D
I ePud([%‘Jj Rack(

J“ePud([%J)—Rank(\_%J)

E - ATl
AT ) = Tty ~ AT

We omit the cases for the rack and pod hosting PM
I and the case for intra-pod transposition, because they
can be easily derived from the above equations.

Our proposed algorithm which is extended from the
framework of Robust Tabu Search and thus denoted as
eRTS, 15 described in Algorithm eRTS. The purpose of
eRTS is to probe different VM placements and find out
the one T with mimnimal energy cost Py,

Algorithm eRTS takes a random VM placement 7° as
input and initiates accordingly (Lines 1-4) and then
iterates the processes of probe (Lines 6-20) and update
(Lines 24-32).

During the mmtiation phase, we calculate the current
traffic sum S, and the current power consumption P ...
according to the methods mentioned above. For VM
placement problem, appropriate move strategy is to
transpose two VMs on different PMs. Each move 1s
assoclated with movement cost which 1s measured, 1n this
study, by the power difference AP, and the traffic sum
difference AS;; 1f VMs on PM I and J are transposed. The
impact on network power cost of a move depends on the
adjustment to both external and mternal traffic for the
corresponding rack and pod and can be quantified
accordingly. Tabul.ist(I,j) maintains the tabu period for
VM j to be assigned to PM 1.

During the probe phase, the procedure selects a best-
quality solution m° among a subset of the neighbors
obtained by probing qualified moves. In case of two
movements with the same power consumption, we use
traffic sum to break the tie (line 13).

We define a set of Boolean variables to facility the
understanding of the update criteria. B, (line 13)
indicates whether the current movement is better than any
other movements in term of power consumption and
traffic sum. B, (line 12) is true if the current movement is
not forbidden by tabu list.

Classical aspiration function allows a tabu move to
be selected if it vields a better solution. According to
Taillard (1991), longer term diversification process is
beneficial for problem with very heterogeneous flows, as
our problem 1s. Thus, a move will trigger aspiration and be
chosen, mrespective of its solution quality, if the exchange
places both VMs in PMs that have not been examined
during the last TA iterations. We define B, , (line 14) to
account for both aspiration criteria. B, , (line 6 and 15)
indicates whether aspiration has been triggered in the
current iteration.

asp_a
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Therefore, the unified update criteria consist of three
conditions (1) Meeting the aspiration criterion for the first
time (L.e., triggering no aspiration yet), (2) Meeting the
aspiration criterion and yielding better improvement over
any other movements and (3) Qualifying for the movement
and yielding better improvement owver any other
moverments.

During the update phase, the curent solution is
substituted by the newly selected one and the tabu list
and the movement cost are updated correspondingly. In
order to escape from local optimum, the reverse moves
(assigning VM 1to PMJ and assigning VM j to PM I)
are put into tabu list and forbidden for a period of time
which is selected randomly between 09n and 1.1n.
Readers could refer to Glover (1990) and Taillard (1991)
for more details on Tabu Search and robust tabu
search.

In summary, the complexity of Algorithm eRTS is
O(iter mum.n®).

PERFORMANCE EVALUATION

We have implemented eRTS algorithm using C/C™
eRTS is
compared with the state-of-the-art network power saving
algorithm ElasticTree. The results demonstrated in the
study are average of multiple runs. Based on the traces
obtamned by Meng et al. (2010), the traffic distribution for
individual VMs is highly uneven. A relatively large

and Python to evaluate its performance.

proportion of VMs have a relatively small average rate
while a relatively small proportion of VMs have a
relatively lugher average rate. To capture the essence of
traffic charactenistic, we used the partitioned traffic model
in the experiment. Under this model, each VM which
belongs to a partition of VMs, sends traffic only to other
VMs in the same partition, with the pairwise traffic rate
following a normal distribution with variance of 0.75. The
proportion of VMs within partition of large traffic rate
from 2-40%. Since, Fat-Tree
homogeneous commodity GigE switches, we use the
mumber of active indicator  of

varies comprises
switches as the
network power consumption. In addition, important
parameters of Fat-Tree topology are summarized in
Table 2.

Table 2: Experiment parameters for fat-tree topology

PM/VM  Rack Pod Pod ToR Aggr Core
k No. size size No. No. No. No.
16 1024 8 04 16 128 128 o4

Algorithm eRTS

Input: Initial VM placement m’
Output: Optimal VM placement 1, optimal energy cost Py

1: T="7

2: Calculate 8. e Pouents Sbest = Scuments Phest = Peugent
3: Calculate movement cost AP A8, VLIE[Ln],I<]
4: Initiate TabuList(Lj) = —e0,¥I,je[1,n]

5 Fori=1 to iter numn do

6 I=T=-LAP_ =AS_ = By ,=false

7 For I* =1 ton-1 do

8: For I”=I*+1 tondo

9: If: L%J:L%J then #I° and J” in the same rack
10:  Continue

11:  Endif

120 Buw = TabuList(I',x' (D) <i or TabuList(T' ="' (I)) <i

13: By,=™ AP, <AP, or (AP, =AP . and A8, <AS )

14: Bup 1 =TabuList(I',n';(T%) <i-T, or TabuList(J'n'p(IN)<T, of
(Peunen APy, p<Pie) O ((Prunen AP, 7 = Preg) and (Soueni APy 7800
15 By~ Bupaor By

16: if (By,, and B,y) or ((not B, ) and B, ) or (B, ; and B;,) then
17: I=IJ=1, AR, =AP.,., AS  =AS,,

18:  Endif

19:  End for /T

20:  Endfor/T

21:  IfI==-1then // All moves are in TabuList

22:  Continue

23.  Else

24:  Transpose (n'.(I),n'.(7)

25 Securent™ ScunenTASE, 72 Povnent = PenenPAPE 1#

26: TabuList (I, m*¢(T)) = T+Random (0.9, 1.1n), TabuList (J, m'1(I))
=T+Random (0.5, 1.1n)

27:  Update AP,,,A8,,,vII&[l,n].I<J

280 TP, ppw “Pues then

290 Shs = Siments Phest = Pouggents T =T

30:  Else if (Promn =Proct 0d S ourent <Sneer) then

31 Ss=Simes T=T

32:  Endif

33:  End for /iteration i

34  Retumm

Figwe 2 shows the number of active network
switches of eRTS and ElasticTree under different traffic
intensity. We can observe that the number of active
network switches grows up as the proportion of heavy

250 TmeRTS
O Elastic tree
2 200
=
2
£ 150
(0]
2
51
S 100
e}
]
(U T T T T 1
2 10 20 30 40

Fig. 2: No. of active switches under partitioned traffic
model
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traffic partition increases for both eRTS and ElasticTree.
This result complies with the desirable property that fewer
traffic volume requires less active switches. In general,
eRTS outperforms ElasticTree under all circumstances. In
particular, the performance advantages of eRTS over
ElasticTree are relatively significant when the traffic
distribution can be better optimized by VM placement,
e.g., when the partition proportion is 10, 20 or 30%.
However, the improvement 1s less prominent when the
partition proportion is 2 or 40%. The reason is that the
optimization space for traffic distribution 1s relatively small
when the traffic variance is very small or very large.
Consequently, eRTS 1s more beneficial to data centers
with heterogeneous traffic flows among VMs. In addition,
eRTS only uses approximately 11% of the switches when
the partiton proportion 18 2 and about 66% of the
switches when the partition proportion is 40%.

CONCLUSION

Based on the msight that an appropriate VM
placement can localize large portion of traffic and thus
reduce load at high-level switches, this study explores the
idea of mampulating VM placement to save power cost in
modern data center networks. We formulate the Network
Power Saving VM Placement Problem (NPS-VMPP) which
is network topology independent. As a preliminary work
towards general approaches for network power saving, we
focus on data center network with Fat-Tree topology in
this study. By transforming NPS-VMPP to a variant of
QAP, we propose a framework based on extended robust
tabu search (eRTS) to optimize VM placement and thus
minimize energy consumption of network devices.
Compared with another state-of the art network power
saving algorithm ElasticTree, eRTS can substantially cut
the network energy bill especially for services with
intermediate and heterogeneous traffic load. In the futwre,
we are going to extend this approach to accommodate the
other modern data center network topologies.
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