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Abstract: Based on the block diagonal preconditioners by Cao in the study [Zhi-Hao Cao, A note on block
diagonal and constraint preconditioners for non-symmetric indefinite linear systems, International Jowrnal of

Computer Mathematics, 83(4) (2006):383-395], we present a new block diagonal preconditioners for non-
symmetric indefinite linear system. Moreover, we analyses the properties of the corresponding preconditioned

matrices.
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INTRODUCTION

We consider the block 2x2 linear systems of the form:
LA 2 "
vy, o\e 0y

where, AcR™ is non-singular and B and CeR**{(m<n) are
of full rank, frequently appears in the solution of
generalized saddle point problems Eq. 1 which include the
linearized Navier-Stokes equations and so forth.

Let:

A=GCE (2)

be a splitting of A, where GeR"™ 1s non-singular.
De Sturler and Liesen (2005) constructed a detailed
analysis for block diagonal preconditioners deriving from
the (1,1)-block of the matrix A in Eq. 1 and the block
diagonal (Saad, 1996). Preconditioner is defined as
follows:

G.- [g CG('J'BTJ @

Murphy et al. (2000) proposed the following block
diagonal preconditioner:

GMZ{A (-)1 TJ (4)
’ 0 CA™B

Cao (2006) presented the following block diagonal
preconditioner:

G- :[(g CG(')‘BT] ©

In particular, when G = A in Eq. 4, the diagonal
preconditioner is denoted by G_,. ie.:

a_D:[A 0 j 6)
; 0 —CA'B

and the corresponding preconditioned matrix G A is
diagonalizable and has at most three distinct eigenvalue:

1+J37i

2

L

Other authors further studied generalized saddle point
problems Eq. 1, please refer to the literature (Zhang et al.,
2009, 2010, 2011, 2012; Huang and Zhang, 2009,
Zhang and Cheng, 2013).

In this study, based on the block diagonal
prenconditioner constructed by Cao (2006), we consider
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the block diagonal preconditioner (¢<0) which is defined
as follows:

aG 0 7
= -
=10 Legw

a

In particular, when G = A in Eq. 7, the diagonal
preconditioner is denoted by G, ie.:

aA 0 ( )
& _ g
Gs o -Leap
a

We will prove that the corresponding preconditioner
matrix G,A is diagonlizable and has at most three distinct
eigenvalues:

LRRE:
a’ a2

&

Remark 1: When ¢ = 0, the block preconditions G and
G, reduce to the block preconditioners G. and G,
(Cao, 2006), respectively. So, the block preconditioners
considered in this study 15 a generalization of (Cao, 2006).

SPECTRAL ANALYSIS

Based on the new block preconditioned matrix G4,

similar to the analysis of (Cao, 2006), we give the
following result to describe the spectral distribution:

L G'A lG*BT
o4 o4 (9)

—l(CG'lBT)" C 0
[0 3

G'A=

Let GT'E=T =1-G'A is the iterative matrix induced
by the splitting Eq. 2 of A. Define M = (CG™'BT)7'C and
N = G'BT, then we may obtain:

FT=G'a=| % @ (10

where, MxR™®, NeR”™ and (NM)* = NM.

LetU' = [u,,..., u_ JeR¥® form a basis of N(NM) the
null space of NM and let U, = [u, .p,.., W]€R™™ form a
basis of R(INM) the range of NM, Thus, [u,, u,]eR™ 1s
non-singular and:

NM[UI,UE]:[UI,UQ][E ?] (11)

Theorem 1: The block diagonal preconditioned matrix

F()=G;'A is diagonalizable and has three distinct
eigenvalues:

1, 114

ot a2

Proof: Denote T=F(0), then from Eq. 10 we obtain:

I, —N
T= e e
1
-—M 0
o
and:
1
~(I,-NM) =N
™= *
1 1
M L
So:
X BEET VR
™ —-T=| % .
a
0 ——1
CLZm
Then we have:
R
a a o

oTT-1nr-L1: 1520
a . a

o x(A—l)(AZ —l1+ %): 0
[e 8 [e 8 e

which have four distinct roots:

&

1+

0L L
o a 2

Since, T® is non-singular, it has at most three distinct
eigenvalues:

1403

2

8|~
&~

Let v = [x", y']" be an eigenvector correspending to
the eigenvalue 1, then we have:
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which implies:
N, =0, NMx =0,1.e., xeN(NM), y =0

Thus, we obtain that the -eigenvector matrix
corresponding to the eigenvalue 1 is:

U, = R
0

Let v = [x", v']" be the eigenvector corresponding to
the eigenvalue:

1+

1
a2

A’i
Then we can obtain:
L1 1 .. 1
(I)—x+—Ny=A.xi)——Mx =3y
o o * o *

From (i1) we have:

Inserting this mto (1) and multiplying the resulting
equation by A, yields. Since:

wLa+l—o
* t oo
we have:
1 2 2 2 1 2 1
NMx=(—-A)ho'x=—0'(A ——A)x=-0" =X,
o o o
1e., xeR(NM). Thus, we obtain the eigenvector matrices:

U2 U2
—1™MU, S -2 MU,

corresponding to the eigenvalue:

5oL L++/3i
a 2
and the eigenvalue:
A L1
a 2

respectively. Therefore, the eigienvector matrix Y(0) of
Fi0) is given by:

Ul U2 U2
YOIy omu. ot
+ 2 — 2

Remark 2: When « increases, the three distinct
eigenvalues:

13

2

R =
2

of the preconditioned matrix G;'A are strongly clustered.
CONCLUSION

In this study, based on the block diagonal
preconditioners presented by De Sturler and Liesen
(2005), Murphy et al. (2000) and Cao (2006), we consider
the new block diagonal preconditioners applied to the
problems of solving non-symmetric indefimite linear
systems. Theoretical analysis shows that the eigenvalues
of the preconditioned matrix G, considered in this study
are strongly clustered.
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