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Abstract: Multiple Signal Classification (MUSIC) algorithm is an excelent algorithm which has high resolution
and low computational complexity for estimating Direction of Arrival (DOA) signals. It performs well when the
number of array antermas M 1s much larger than the sources D, otherwise its performance severely degrades
and DOA of the signal sources even can not be estimated. Based on the idea of Euler's formula, this study
introduces an improved MIUSIC algorithm utilizing signal conversion to reconstruct a new received signal matrix
for real constellation signals. Derivation process of the improved algorithm considers that the new matrix does
not change original one’s characteristic and still retamns the same rank. Simulation results show that estimating
performances of improved algorithm outperform the traditional ones for the case of D = M and it is also
observed that the improved MUSIC algorithm is able to estimate the number of antennas up to 2(M-1) in lower

SNRs.
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INTRODUCTION

The subject of smart anternas 1s beginmng to enjoy
immense popularity due to the cwrent rapidly growth in
all forms of wireless communications. In the realm of
mobile wireless applications, ranging from mobile cellular
(Winters, 1998, Anderson et al., 1999; Alexiou and
Haardt, 2004) to Personal Commumcations Services (PCS)
to radar (Gross, 2005) are hoping to utilize smart antennas
to boost capacities, expand bandwidths, mitigate mutipath
fading and increase Signal-to-noise Ratios (SNRs) and
improve MIMO communications. Smart antennasgenerally
refers to any antenma arrays with a soplusticated and
smart signal processing algorithm used to direct narrow
beams toward the users of mterest while nulling other
users not of interest. Therefore it is an important
prerequisite for antenna arrays to distinguish the
directions of interesting signals or interfering signals. In
other words, Direction of Arrival (DOA) estimation 1s a
pivotal signal processing technology by structuring the
space spectral function according to the characteristics
of the received signal to estimate the azimuth angles for
smart antennas.

There has been considerable work on DOA
estimation algorithms that divided
three categories: Linear prediction methods (Capon, 1969,
Pisarenko, 1973) subspace decomposition methods
(Schmidt, 1986; Zoltowski et al., 1993; Roy et al., 1986)
and subspace fitting methods (Viberg and Ottersten,
1991). In all of DOA estimation algorithms, multiple signal
classification (MUSIC) algorithm put forward by
(Schmidt,1986) has a wide range of applications and

can be into

extensively studied for offering a good trade-off between
estimation performances and computation costs. Under
the ideal conditions, the algorithm has high-resolution
and estimation accuracy. However, the performance of
MUSIC algorithm will become weak in some conditions
suchas correlated sources, multipath charmels, non-
(Gaussian white noise, low signal-to-noise ratios (SNRs)
which usually encountered in the practical applications.

Therefore, (Pillai and Byung, 1989; Debasis, 1996)
respectively  proposed  forward/backward  spatial
smoothing method and modified MUSIC algorithm for
coherent signal identification. Later (Amina et al., 2012)
proposed a Support Vector Machine (SVM) MUSIC
algorithm which combines the benefits of subspace
methods with those of SVM having better performance
with uncorrelated and coherent signals and in small
sample size situations. In the recent years with the
developed FPGA technology the research objective of
academia 13 more emphasis on reducing computational
complexity of MUSIC algorithm for hardware
implementation. For example, (Bowri, 2012) proposed an
approximation of MUSIC algorithm and (Wang et al.,
2013) proposed a new mixed-order MUSIC algorithm to
reduce the computation which make a good foundation
for the practical application of the MUSIC algorithm.
(Majid et al., 2013) made some improvement of MUSIC
algorithm and tested on the hardware platform.

However, the performance will deteriorate in practice,
for example when the number of sowces are equal to or
greater than the number of sensors, or simply low SNRs
{(loannopoulos et al., 2012; Yang et al., 2011). In order to
study the performance in this context (Wang and Wang,
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2012) proposed to an improved algorithm using the
Euler’s complex number formula and proved that the
proposed method outperform the traditional MUSIC in the
same conditions. The literature also mentioned the
proposed method can estimate the number of sowces
2(M-1) but had no specific theoretical explanation and
gave no discussion in the case of low SNRs or small
number of snapshots in practice. On the other hand,
(Zhang et al., 2009) proposed to reconstruct the noise
subspace whose performance had been greatly improved
relative to the traditional algorithm in low SNRs. Later,
(Wang et af., 2011) proposed a self-adapting root-MUSIC
algorithm for vector hydrophone array, compared with
MUSIC algorithm which also had better performance for
low SNRs and it had almost the same estimation
performance for lugh SNRs with MUSIC algorithm. But
neither one of these studys is able to deal with the
number of sources much larger than sensors’.

This study proposed an improved MUSIC algorithm
using the idea of Euler’s formula to estimate real signals
in low SNRs. The remainder of this study is organized as
follows. Models of signals and the MUSIC algorithm are
described in section 2. In section 3, we introduce all the
reasoming process of the mproved algorithm. In section
4, we present some numerical examples that the proposed
approach compared with the traditional MUSIC and
MMUSIC algorithm. Section 5 gives some conclusions
about the MUSIC algorithms.

MODELS OF SIGNALS AND THE MUSIC
ALGORITHM

Model of received signals: Considering D narrow-band
source signals are received by an array of M sensors
which are Uniform Linear Array (ULA). We assume that
the users are located n the far-field region. As Fig. 1, each
received signal x (k) includes additive, zero mean,
Gaussian noise. Time 15 represented by the kth time
sample. Thus, the mth element of the received signal at
time k can be given in the following form:

s (k)
s, (k)
X, (k)=[2,(8)a,(6,)--a, (6)] : +n, (k)
g, (k)
Where:
-2 in,

a (0)=¢e

is a steering function associated with the ith sources with
DOA 8, element spacing d and the wavelength of the

6y

Fig. 1: M-element array with arriving signals

incident radiation A. s(k) represents the #th incident
complex signal at time k and n, (k) represents noise signal
at the mth array element, zero mean, variance o®. Thus, the
received signal of M-elements array at time k can be
written as:

2,(8) 2,(0,) a,(8y) s, (k) n, (k)
X(k) = a, (iel) a, (iez) a, (?D) |5 (k) . n, (k)
a,(8) a,(8,) - 2,6 |s,k n, k)
that
X(k) = A (8)Sk)HN(k) (1)

where, A(0) is MxD matrix of the steering vectors, S(k)
represents vector of mecident complex signals and N(k) 1s
noise vector at the mth array element.

Music algorithml Tt is assumed that S(k) and N(k) are
independent of each other, source signals uncorrelated
and noise with equal variances. Then MUSIC algorithm

steps are as follows:

* Calculate the covariance matrix of the received
signals data samples X(k)(k=1,2,... K), then:

R, =E[XX"]= AR_A" + &1

R, = %éxm. X* i)
Where:
R, =E[Stk)s™ (k]

1s the covariance matrix of source signals and [ represents
M-order unit matrix
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+ Find the eigenvalues and eigenvectors for R, we
have R,V = VA where A = diag{h,, A, ..., Ay}
represents the eigen-values from small to large [0
arranged andV = [q, q; ... Qu.] are the eigenvectors
associated with the eigenvalues

¢ Tltilize the multiple number of the
eigenvalues N to estimate the number of sources D,
namely:

smallest

D=M-N

*  Construct the MxN diumensional subspace spanned
by the noise eigenvectors such that:

Ey =199, Qw1

+  According to the orthogonal of the noise subspace
eigenvectors to the array steering vectors at the
angles of arrival 6, 0, .. 0. the MUSIC
pseudospectrum is given as:

b 1
MUEE T M (0)YE, Ella(e)

then finding out the maximum point is the angle of
mcident signals.

ANIMPROVED ALGORITHM BASED ON SIGNAL
CONVERSION

In modern commumcations systems, BPSK and
MASK modulation signals having characteristics of the
real signal are widely used. Therefore, the new method
makes use of the characteristic that S(k) = S'(k), we apply
Euler’s equation:

e = cosy+ jsiny
to preprocess the received matrix in Equ. (1), then:
Xk = (A 0+ jA () 8(k)+ N (k) + N (k)

We define:

Xc (k) =

w = A, (O)S(K) + N (k)

T

= Ay (B8 + N, (k)

The data received signal matrix X.(k) can be
reconstructed as:

Xk [ Ael® N, (k)
X®{&®}thmu@&J

=A@ 3K+ N k)
Thus the covariance matrix R of X.(k) is:

R, =EXX']=AR_A"+c1 (2)

T sst tr

According to the definition of eigenvalues, [JJ the
eigenvalues of § g .4 1 (from small to large [

arranged) meet the condition:

R, - All=0
From (2), we can rewrite it as:
AR AY (A —oh=0 (3)

Because of matrix 4 18 a full column rank for
composed of independent linear steering vectors, the
pretreated A, does not change the matrix characteristic
and is still a full column rank matrix. R,, is a non-singular
matrix when the sources are uncorrelated. Therefore,
when the number of mcident signals D 1s less than 2M,
the dimension 2x2M matrix A R_A" is a [0 positive

sty

semi-definite matrix as follow:

rank(AR_A")=D 4

st tr

As the basic knowledge of linear algebra shown, the
matrix AR_AY has 2M-D zero eigenvalues. Therefore

equation (3) can be inferred thatR, has 2M-D

eigenvalues ¢, To arbitrary eigenvalues exist the
following relationships:

R4 =44
(R, —ADa =0 (5)

To 2M-D eigenvalues o and the eigenvectors
associated with the eigenvalues, we have:

(R, —o'Dy — (AR AT+ T-o'Dy —0AR ARG =0

st tr T sst r

As AL is a full column rank matrix and R _is a (C]
positive semi-defimite matrix, so:

Hr
AGi=

We can also mfer:
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A¥ARg, =0 (6)

where, n 13 weighted factor that greater than or equal to 0.
We define the noise subspace as follows:

Ey :(qum'"’xrl«fﬂu—l)

As shown in Eq 6, the

corresponding to the signal component are orthogonal to

steering  vectors
the noise subspace eigenvector, so:
a (@b, Ela (6)=0

Therefore the incident DOAs can be estimated by
determining the spatial spectrum peak:

1
al (eE, FHa (6)

Pysre =

From the above reasomng process known, the
reconstructed signal matrix X (k) has been turned into real
number matrix to make the computation complexity less
than the tradittonal MUSIC algorithm. The matrix X (k)
with 2M=D is equivalent to double the rnumber of
available array elements. Therefore, the improved
algorithm can deal with source signals up to 2(M-1).
Utilizing the noise eigenvalues to weight eigenvectors
and selecting an appropriate weighting factor n can
improve the performance of the algorithm in low SNRs.

DISCUSSIONS AND NUMERICAL RESULTS

In this section, simulation results are presented to
illustrate the performance of the improved algorithm and
to compare 1t to the tradittonal MUSIC method, modified
MUSIC (Debasis, 1996) method. The additive background
noise is assumed to be white complex Gaussian with
zero-mean, having the 0.1 variance value.

Relations between s and resolution: Consider 4-elements
umform linear array with the inter-element spacing d = A/2
(4 1is the camier wavelength). Two narrow-band
uncorrelated sources are received from -5 and 10 The
number of snapshots 1s K = 100 and the sources SNR 1s
15dB. In Fig. 2, we show the relations between weighted
index n and the resolution of improved algorithm. It 1s
evident that n 1s not the bigger the performance better.
When n beyond a certain value, there will be some false
peaks. We find the simulation result is relatively good at
n =5, so the following simulations take n = 5.

5 Lamda=0
__ Lamda=2
-5 | _. _lLanda=4
..... Lamda=6 §i
. Lamda=s
-15 Lamda= 10
Lamda=12
Lamda=14
S -25 —Lamda=16
T
-35
45 L
-55 [l

- FE N N (NS L S S NN [N S [ [H | S ([
-90 -80-70-60-50-40-30-20-10-0 10 20 30 40 50 60 70 80 90
Angle

Fig. 2: Relations between n and resolution
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Fig. 3: SNR=15dB

Estimation performances analysis with SNRs: Consider
4-elements umform linear array with the nter-element
spacing d = A/2. Three narrow-band uncorrelated sources
are received from -5, 10 and 23°. The number of snapshots
is K =100. Fig. 3 and 4 depict the performance of the
improved algorithm, MUSIC algorithm modified MUSIC
algorithm in the case the SNRs is 5dB, 15dB and weighted
index nis 5.

As Fig. 3 shown the MUSIC algorithm and MMIUSIC
algorithm cannot be able to give an accurate estimating
with two uncorrelated signal sources when SNR is 15dB.
Especially there is a clear deviation when the direction of
arrival 6 is 10°. However, the improved algorithm can
clearly distinction the three angles. Fig. 4 shows that the
MUSIC and MMUSIC algorithm have not been
completely distinguish the DOAs except 6 = 23° when
SNR is 5dB. But the improved algorithm still can
accurately distinguish the three angles DOAs. So it can
be drawn that the improved algorithm has good estimation
performance not only in high SNRs but also in low SNRs.

5273



Inform. Technol. J., 12 (19): 3270-5275, 2013

5 TN Te o R
—.—..MMUSIC agorithm
Gl —Improved agorithn

-15r

E !

1)l

-35

45 [t i s

-551

-6590-80-70 -60 50 -40 -30-20-10-0 10 20 30 40 50 60 70 80 90

Angle
Fig. 4: SNR=5dB

5 Music agorithm e
—.—-Music dgorithm !
— — =Improved agorithm :
-5t.. i SRS PR
l o
1} :
i | :
— .15 1 io§ o
G r . I N n
T 1 .
= RS
Hon '| :
itodery Mo
-25| LRl ALy ,l i
(A R A
[ Y 13
: Y 1
TN ik i
-35 Lt D e “
et h :
! v
! b
t Y
LA i I i A

-45 T N 1 e op P Gt E T
-90-80-70-60-50-40-30-20-10-0 10 20 30 40 50 60 70 80 90
Angle

Fig5:D=M~=4,0=-10, 23,5, 18, 30°

——Music agorithm
—.—-Music agorithm £
— —=mproved algorithm | |
—— T 1
]
]
P s i on : :
=15 L B IR B g
s : BN
a L
4 . N oo
: + I b 1 1
-25 Lpstimeb et it it
) : L@ 4 . H H
nop og1oN i
i W g g b A gl
ass|.. Noaniiilin
- b % ¥ WA WO O B TN e
: oL e :l :
'!l 3 f : \\ h ‘l :
Vo :
2 ; £ oyig . ]
i it . A i i

- i i N it g ;
-90-80-70-60-50-40-30-20-10-0 10 20 30 40 50 60 70 80 90
Angle

Fig. 6: D = 5£%M, 0 = -28, -10, 23, 5, 20, 37°

Estimation performances analysis in multi-sources:

Consider 4-elements wmform linear array with the

mter-element spacing d A2, The number of

snapshots is K = 100 and the sources SNR is 15 dB.
Fig. 5 and 6, respectively estimate four sources, five
sources at n = 5 and depict the performance of three
algorithms.

As Fig.5 and 6 shown the MUSIC algorithm and
MMUSIC algorithm has been completely ineffective to
estimate DOAs when 4 or 5 uncorrelated sources meident
in 4-elements antenna array. As the literature [24] said the
two algorithms can estimate the number of signal
sorces up to M-1. However, the improved algorithm still
can give a estimation when the number of signal
sources 1s equal to or greater than the number of array
elements.

CONCLUSION

The improved algorithm is a method which gives a
pretreatment of the received signal and reconstructing the
noise subspace based on the traditional MUSIC
algorithm. It not only increases the number of sources
which is twice more than the MUSIC algorithm but also
can clearly distinguish the DOAs regardless of high or
low SNRs. However, the improved alg orithm which carmot
be widely used 15 only suitable for uncorrelated sowrces
and real modulation constellations. Estimating DOAs in
the smart antenna systems will often encounter some
problems such as multipath channels, the coherent
sources estimating in practice and ligh efficiency complex
modulations. In the next stages, we will make the
improved algorithm perfect to estimate the coherent
sources of multipath channels.
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