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Abstract: In flexible logics, operation models are continuously variable operator clusters along with both
generalized self-correlation coefficient k and generalized correlation coefficient h in their existential domain.
Based on the principal of modifying central base models by generator integrity clusters, this study uses
exponential N/T-generator integrity clusters to define the flexible average operation models of propositional

comnectives on [0.8) mterval, designs an algorithm for Approximate Support Vectors (ASVs) selection and
applies O-level flexible average operation model on [0,8) to the selection of ASVs in Support Vector Machine

(SVM) traimng.
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INTRODUCTION

Prelimmaries of flexible logics: Fuzzy logics, the true
value of proposition is a real number x€[0,1]. Fuzzy logic
can solve the fuzziness of true value and has been widely
used in many fields. But m ow opimon, not only the
contimuous changeability of propositional true value but
also the continuous changeability of relations among
propositions affects the operation model of propositional
connectives. We call the former truth value flexibility
while the later relational flexibility. Flexible logics (also
called umversal logics) maimly research the relational
flexibility. Relational flexibility is caused by two
independent factors as follows (He et al., 2005):

Measurement error of true value: The measurement error
affects the truth value calculation of NOT propositions,
so it affects all the logical operations. The relativity
between propositions and their NOT propositions 1s
called generalized self-correlativity. The continuous
generalized self-correlativity coefficient ke[0,1] is used to
describe the size of generalized self-correlativity.

Relationship between propositions: Relationship between
propositions affects the truth value calculation of binary
composite propositions. The relativity is called
generalized correlation which can change continuously

from the maximal correlation to the mimmal correlation.

The continuous pgeneralized correlativity coefficient
he[0, 1] 18 used to describe the size of generalized
correlativity.

Flexible logics operation models are generated based
on the generator integrity clusters which modify each
logic operator central base model: N-generator mtegrity
cluster modifies the effect to propositional truth value
caused by generalized self-correlativity (measure errors),
T(S)-generator integrity cluster modifies the effect to
relations of the propositions caused by generalized
correlativity. Take AND operation in flexible logics for
example:

T(x, v, b k) = F{(max(F(O, b k), F(x, b, k)
+F(y, h, k)-1), h, k)

in which F(x, h, k) = F(®(x, k), h), F{x. h) 1s called
T-generator mtegrity cluster, @(x, k) 1s called N-generator
integrity cluster; k and h are generalized self-correlativity
coefficient and generalized correlativity coefficient
respectively. So, flexible logic operation models are
continuously variable operator clusters along with both
generalized self-correlation coefficient k and generalized
correlation coefficient h in their existential domain.
Because of space constraints, for detailed research about
flexible logics (He et al., 2005).
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Research background: At present, researches on flexible
logics are mainly based on [0,1] base space. For over 10
yvears since flexible logics has been established, many
researchers have made deep study on several different
theoretical aspects (Ma and He, 2006, TLuo and He, 2005;
Xue et al., 2008; Zhang et al., 2006, Chen et al., 2011).
Flexible logics have also made certan achievements
applied to ternary optical computer, data mining, etc.
(I et al., 2004; In et al., 2005; Tia, 2009). But all these
researches are mainly on [0,1] base space.

However, in some important disciplines, such as life
science, social science, thinking science, intelligent
sclence, ecological system, meteorology system, as well
as complex and large systems, 1t 13 difficult to transfer
problem domain into [0,1] space. The difficulties are
mainly due to:

* In complex nonlinear systems, it 13 not easy to
determine the membership finction because of the
interaction among many variables

* In essence, the process to decide the membership

should be objective,
understanding to the same fuzzy concept 1s different,
it is subjective to determine the membership function

¢ Complex system has higher sensitivity to initial

function but everyone’s

values, the transformation between different domains
will lead to information loss. The small deviation of
the mmitial value will cause the extremely deviation of
the results

Chen (2004, Mao et al. (2006), Chen et al. (2006a)
and Chen et al. (2006b) studied the models of binary
propositional connectives in [a, b] space with certain
lower/upper limit. Tn comparison with [a, b] space with
certain lower/upper limit, the properties of no upper limit
problem changes greatly, especially the construction of
N/T/S generators and the generation method of
corresponding norms are different.

This study focuses on the construction of flexible
Average propositional comnective on [0,8) interval by
using exponential integrity clusters, designs a algorithm
to apply the model to the selection of Approximate
Support Vectors (ASVs). The detailed organization of
each part is as following:

Part2: Basic set of exponential integrity clusters of NT
operation model on [0,8) interval

Construction of flexible Average propositional
connective and proves the four special Average

Part 3:

operators on [0,8) interval

Part 4: Designs an algorithm for applying 0-level flexible
Average operation model to the selection of
ASVs before SVM training process

Part5: Conclusion of the study

For the pupose of abbreviation, the following
discussion s on [0,8) space unless otherwise specified.

BASICSET OF EXPONENTIAL INTEGRITY
CLUSTERS OF OPERATION MODEL

As mentioned above, flexible logic operation models
are generated based on the generator integrity clusters.
Directly substituting N-generator integrity cluster ®@(x, k)
into the base model of NOT propositional connective, we
can obtain the operation model of NOT propositional
connective to achieve the definition of flexible NOT
propositional connective. For [0,8) interval, refer to
(Fan et al, 2012). Sunilarly, if directly substituting
T-generator integrity cluster Fy(x,h) (or S-generator
integrity cluster Gy(x,h)) into the NT base model (or N3
base model) of binary propositional connective, we can
obtamn the O-level operation moedel of binary propositional
connective; if directly substituting N-generator integrity
cluster @(x.k) and T-generator integrity cluster Fy(x,h) (or
S-generator mntegrity cluster G;(x,h)) mto the base model
of binary propositional connective at the same time, we
can obtain the 1-level operation model of binary
propositional comnective, thus we can achieve the
defimtion of flexible binary propositional connectives.

Here, the basic elements for establishment of binary
propositional connective operation model on [0,8) interval
will be discussed, in which exponential N-generator
integrity cluster, exponential T-generator integrity cluster
and N'T operation model are used.

Exponential N-generator integrity cluster:

Definition 1: Suppose D(x.,k) 13 a N-cluster in [0,8), in

which ke[0, 1]. For a certaink,c[0,1], ¢(x) = D(x, k) is a

N-generator. If O(x, k) satisfies:

+« O, k) 1s continuous
decreasing with k

+ k=07 A(1+Dd7(x, k)) and ifk= 0.5, then O(x,
k=, =x

s Whenk=1, O(x, k)=®,, whenk =0, O(x, kK)=D;’

s Fork ke[0, 1], there 1s k, €[0, 1] which makes O(x,
ko) = D(D(x, k), ko)

s Forke[0, 1], there is k,'e[0, 1] which makes ®7'(x, k,)
=d(x, k"

and strictly monotone

5378



Inform. Technol. J., 12 (19): 5377-5385, 2013

Then @(x, k) is called N-generator integrity cluster,
whose abbreviation is N-generator cluster. In which @' =
D' = ite{8x—8, 0}, B =D/ =ite{Ox =0, 8}.

Here @ '(x, k) indicates the inverse of ®(x, k) to the
variable x.

Theorem 1: When x—[0, 8), the exponential function
cluster @,(x, k) = x"((1+x)"=x", 0=0, k = 2™ is N-generator
integrity cluster.

Proof: We can easily get that @,(x, k) 15 a continuous
and strictly monotone function on [0, 8) mcreasing
along with x and a contimuous and strictly monotone
function decreasing along with k. And we have k = @,
(1, k¥(1+Dd, (1, k) (Fan et al., 2012). Moreover, when
k=1,0,x kD, whenk =0, &{x, k)~ D/, when k= 0.5,
O(x, k)=, =x
For any two generators in the clusters:

D,(x, k) = (10 %"

®,(x, k) = xH(1+x7x)
their composite operation:
(xnl /((1+x)nl 7xn1))n2

L A0 0" )2 AT e
(T g D, (x,ks;)

D,(0, (k) k) =

and inverse operation:
(DZ_I(X, kl) — Xl!nl/((ler) lt’nl_xlfnl) = (I)Z(X, kll)

are also mn Px, k) cluster, so D,(x, k) cluster is self-closed
in composition and inverse operation.
Therefore @,(x, k) 1s N-generator mntegrity cluster.

Exponential T-generator integrity cluster:

Definition 2: Tf T-generator f(x) is continuous along with
generalized correlation coefficient h on [0, 8), f{x) 15 called
T-generator integrity cluster, denoted as f(x, h).

Definition 3: Tf S-generator g(x) is continuous along with
generalized correlation coefficient h on [0, 8), g(x) 15 called
S-generator integrity cluster, denoted as g(x, h).

Definition 4: For T-norm or S-norm on [0, 8), if there is
no measure error, 1.e., no effect of truth value error k,
T(x, ¥, h) and S(x, v, h) are called 0-level T-norm integrity
cluster and O-level S-norm integrity cluster respectively.

If there is effect of truth value error k, they are called
l-level T-norm integrity cluster and 1-level S-norm
integrity cluster respectively, denoted as T(x, v, h, k) and
S(x, v, h, k), respectively.

Theorem 2: Exponential function cluster:
f(x) = x"A((1+x)"-x™)

is O-level T-generator integrity cluster on [0, 8), in which
m = (3-4h)/4h(1-h), m—R, h—[0, 1].

Proof:

»  Exponential function cluster {f(x) 1s a continuous and
strictly monotone function on [0, 8):
*  Whenm>0, f(x)1s increasing and f{0) = 0, f{8)—8,
so f{x) 1s an automorphism mcreasmg T-
generator
o When m<0, f(x) is decreasing and f{0) = -1,
f(8)—8, so f(x) is an extensional increasing T-
generator

+ By equation:
m = (3-4h)/4h(1-h)

we know that ifh = 0, then m—8;1fh=0.5, then
m=1;1fh=075, thenm = 0, 1fh =1, then m—-8. That
1s h changes from Oto 1, then m changes from 8 to -8.
m 18 continuously and strictly monotonely
changeable along with h, so f(x) is a continuous and
strictly monotone function along with generalized
correlation h and denoted as:

Fo(x, h) = x™((1+x)"x™)

Since, the effect of generalized self-correlation k 1s
not considered, 1.e., the effect of measure error 1s not
considered, so Fy(x, h) 15 called O-level T-generator
integrity cluster.

How to define and compute the generalized
correlation coefficient h n T/S-norm mtegrity clusters 1s
both theoretically and practically important. There are
three ways in research to define the relation between h
and m, see reference [3] for detailed discussion.

If the effect of generalized self-correlation coefficient
k is considered on O-level T-generator integrity cluster, we
can obtain 1-level T-generator integrity cluster.
Sequentially, 1-level T-norm imntegrity cluster can be

achieved.
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Basic set of exponential integrity clusters of NT
operation model: The basic set of exponential NT model
mntegrity clusters includes O-level N/T-generator integrity
clusters, 1-level N/T-generator mtegrity clusters, O-level
N/T-norm integrity clusters and 1-level N/T-norm integrity
clusters. Directly substituting these basic integrity
mtoe NT-base models of NOT and, OR,
Implication, Equvalence, Average, Combination and other
self-defined propositional connectives on [0, 8), we can
obtain O-level an 1-level flexible operation models on [0, 8).

Basic set of exponential mtegrity clusters of NT
operation model on [0, 8) nterval 1s as follows:

clusters

*  O-level N-generator integrity cluster:
$(x) = x (Le., with no measure error, k=05, n=1)
¢ (-level N-norm integrity cluster:
Ni(x) = 1/x (1.e., central N norm)
¢ (-level T-generator integrity cluster:
Folx, h) = x"((1+x)™-x") = 1/((1+1/x)"™-1)
¢ (-level T-norm integrity cluster:

T (x.y, ) = Fy (max(F(0, h), (Fy(x, F(y, h)-1)
H(2HF(x, hHFoy, ), h)

*  l-level N-generator integrity cluster:
b.(x, k) = x/((1+x)"x")
¢ l-level N-norm integrity cluster:
N(x, k) = (1)1 +0)-((14%)"x") )
*  l-level T-generator mtegrity cluster:
Fix, h, k) =F(b,x, k), h) = (= "x™) = V(1 -+ /%))
*  l-level T-norm integrity cluster:

T(x, v, h, k) = F ' (max(F(0, h, k), (F(x, h, K)F(y, h, k)-1)
A24F(x, h, k+F(y, h, k), h k)

Explanation of several important parameters and their
relations:

n = Position mark parameter of N-generator integrity
cluster

-
I

Generalized self-correlation coefficient
Position mark parameter of T-generator integrity
cluster

=
I

= Generalized correlation coefficient
= -1/logk, k—+[0, 1]

271 R,

= (3-4h)/4h(1-h), h—[0, 1]

= {(1+m)-((1+m)-3m)**)/(2m), m—R

ey s
I

For the purpose of the integrity of the study, here
only gives a simple introduction. Detailed discussion
about N-generator mtegrity cluster and N-norm integrity
cluster on [0, 8) can be referred in reference (Fan et af.,
2012). More researches about T/S-generator integrity
clusters and T/S-norm integrity clusters have been
discussed n other studys which are in publication
process.

FLEXIBLE AVERAGE LOGIC OPERATION MODEL

Generally Average operation only exits in numerical
analysis and decision analysis. There is no Average
propositional connective n the traditional logics. Due to
the affection of two-value logic, it seems that there in no
need to consider Average problems in logic. Tt is
senseless to compute the average value of two
propositions with different values (one 1s true, the other
15 false). But in continuous-value logics, the Average
operation can not be neglected. As their truth value is
likely to be any value in their definition domain, however
the result of AND operation is not more than the minimum
and the result of OR operation 15 not less than the
maximum. Their must be an operation to describe the logic
compromise between the mimmum and the maximum that
1s Average operation.

The physical meaning of flexible Average operation
is: the result of twice observation and testing on the same
object is generally different and the value should be
obtained m the logic compromise of two observation
results. There are various Average calculation methods,
such as arithmetical Average, geometrical Average,
harmonic mean and exponential Average, in which there
15 the difference of 1sobar and non-isobar. In flexible
logics, logic operators are continuous operator clusters
between maximum operator and minimum operator, $0
flexible Average operation can generate all the Average
operation above.

Defuntion of flexible Average logic operation model:
All central operation models can be expressed not only as
NT (NOT-AND) base model, but also as NS (NOT-OR)
base model. Generator integrity clusters are different and
expressions of the base model are also different, but the
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operation models generated by them are the same. The
following is Average operation models generated through
putting N-generator mtegrity cluster and T-generator
mntegrity cluster mto NT-base models on [0, 1] base space:

M(x, v, h, k) =N({F(F(N(x, k), h, ky2+
F(N(y, k), h, k)/2, h, k), k)

As discussed above, we substitute O-level T-
generator integrity cluster into NT base model of central
Average operation (generated through umilateral infimte
expanding, [0, 1]—[0, 8): x' = xA1-x), the middle element
e’ = 1), the following definition is proposed.

Definition 5: Substituting O-level T-generator integrity
cluster:

Fo(x, h)y = x®/((1+x)"-x™)
and 0-level N-norm mntegrity cluster:
N(x)=1/x
mto O-level NT base model of Average operation:

M(x,y.h)
. N[F,l [F(N(x),m +FONG). ) -+ 2FONGO) FNCY)L ) hD

2+ F(N(x),h) + F(N(y),h)

the flexible operation 1s called O-level Average operation,
denoted by ®, where x, y—[0, 8), m = (3-4h)/4h(1-h),
h—[0, 1], m—R.

Definition 6: Substituting 1-level T-generator integrity
cluster:

F(x, h, k) = x"™/((1+=)*"x"™)
and 1-level N-norm mntegrity cluster:
N(x, k) = (1) (140)-((14+%)"x2)")
mto 1-level NT base model of Average operation:

M(x,y.h.k)
= N(F{({F(N{(x,k),h,k) + F(N(v.k),h, k)
+ 2F(N(x,k),h, K)F(N(y,k),h k)
/(2 + F(N(x. k), h,k) + FON(y. k), b kD), hL koLk)

the flexible operation is called 1-level Average operation,
denoted by &, ,, where x, y—[0, &), m = (3-4h)/4h(1-h),
h—=[0, 1], m—R; n=-1/logk, k—[0, 1], n—R..

For other O-level and 1-level logic operation models,
the same method could be employed.

Four special flexible Average operators: In order to
ensure the O-level integrity of Average flexible
propositional connective operation model, it is
continuous from maximal Average operator, passing
through the probability Average operator and central
Average operator to the minimal Average operator,
there are several special operators in the operator clusters.
For example, when k = 0.5(no measure error) andh =1,
h=0.75h=0.5, h =0 respectively, the operator clusters
are corresponding to the four special operators: Zadeh
operator (maximal operator), probability operator,
bounded operator (central operator) and drastic operator
{minimal operator).

Theorem 3: If h = 1, then m—-8, binary 0-level flexible
Average operator is maximal Average operator, also called
Zadeh Average operator:

Mix, v, 1) =max(x, y)
Proof: As M(x, v, 1) = (2(142)"(1+y)™ (1420 H 1 +y ™) ™1

li_)r_nw(Z(l + X1+ AL L+

- L2100 (9™ ™ +L459™)
=

= fim MR e e ()

= lim ¢
m—s—co m—y—oo
g IO Q)™ (P 4Ly
— o P
By L'Hospital's rule:

lim In20+x)" 1+ " /(.(1 " 1+ ™))

m—-om m

~ lim A+ v In(l+x)+ A+ x)" In(l+v)

m—s 1+x)"+1+y"
. 1 1
= lim ((———— ) In{l+ x) + {(————)In{l+ ¥)) 1
RO (l_x)m 1s (“_y)m M
1+vy 1+x

o ifx=y.Eq lisln(l+x) =In(1+y), soM(x, vy, 1)=x=y
» if x>y, there 1s 1+x>1+y, Eq. 3 15 In(l+x), so

Mx, v, 1)=x
o if x<y, there is 1+x<l+y, Eq. 3 is In(l+y), so
Mx,y, )=y

So, M(x, y, 1) = max(x, v).

Theorem 4: If h = 0.75, then m—0, binary 0-level flexible
Average operator is probability Average operator:
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Mix, v, 0.75) = (101 +y)™-1
Proof: Similar to Theorem 1, we have:

lim I+ InQ+x)+ 1 +x)" In(l+y)
w0 d+x)" +(l+y"

limln(1 + O+

m—-0

~lim In(l+ x);].n(Hy) _

So, M(x, y, 0.75) = (1-+)(1+yn'=-1.

Theorem 5: Ifh = 0.5, thenm = 1, binary O-level flexible
Average operator 13 bounded Average operator, i.e.,
central Average operator:

M(x, v, 0.3) = (x+y+2xy )/ (2+x+y)
Proof: As:

M(x, y. 0.5) = (2(14+x)"(1+y)"A((1+x)™H 1+y ™)1 =
(xHy+2xy)/(2+x+y)

So, M(x, v, 0.5) = (x+y+2xy )V (2+x+y).

Theorem 6: If h = 0, then m—&, binary O-level flexible
Average operator is minimal Average operator, also called
drastic operator Average operator:

Mix, y, 0) = min{x, y)
Proof: Similar to Theorem 1, the detailed proof is omitted.

07
@

06
05 r
04 - - . 0 *
**** * 4 ******n

+ + % *
03 r

02

01 r

APPROXIMATE SUPPORT VECTORS(ASVs)
SELECTION

It 1s known that only support vectors in SVM make
contributions to the classification decision. Support
vectors are the samples which are close to or on the
classification margin. If the support vectors or ASVs
(samples which have possibility to be support vectors)
could be selected before traming, traming samples will be
reduced greatly and then the training efficiency will be
raised. Based on the characteristics of forces between
negative and positive electric charges-like charges repel
each other, but opposite charges attract, we design the
following algorithm.

Definition of attraction between samples: Suppose there
are two classes of samples called positive samples and
negative samples respectively. If x belongs to positive
class, then v, = 1; otherwise y, = -1. If x,and x; are linear
separable, then the distance r; between x and x is
Euclidean distance, r; = |x-x;; If x1 and xj are linear
un-separable, then the distance r; between x; and x; is
Hilbert space distance, 1 = JK(x,,x, )+ K(x,x)- 2K(x, X)),
K(x, x;) is kernel function. For any x; in the training
samples, the attraction it received from the same class

samples 1s denoted as AF,, the attraction it received from
the different class samples is denoted as UAF,. Figure la
shows the force distribution in which the attraction is
from samples in the different class; Fig. 1b shows the
force distribution in which the repulsion 1s from samples
in the same class; In Fig. 1a, the darker the color 1s, the
bigger the attraction is from other class; In Fig. 1b, the

07 |
(b)
06
05
04
03 f . b N

02 Wi 2 e TN

0.1

0.0
0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Fig. 1(a-b). Force distribution chart (a) Forces distribution among samples in different classes and (b) Forces distribution

among samples in same classes
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darker the color is, the bigger the repulsion is from the
same class. The selection of ASVs is to maintain the
samples close to the boundary of different classes as far
as possible. Generally, the selecton of ASVs 1s a
compromise of the attraction and repulsion. Because we
will compute the average value of the two factors as the
criterion of the ASVs selection, here we revise AF and
consider the effect of UAF to the selection 1s bigger than
that of AF. AF, and UAF, are defined as follows:

AF =max( 3, (‘ka‘ > ( )+m1n( D (|yky‘

Ty xJeC kj 21Xy = 1 Ay Xj = K

in which C 1s the sample set in which samples and x,
belong to the same class; i—j, k—;1,j, k=1,2, ..., m,, m,
is the number of samples in set C:

_ (\ykyﬂl

napeC T2

UAR= S y,yﬂI

el ool ri]l

in which C is the sample set in which samples and x
belong to the same class; C is the sample set in which
samples and x belong to the different class; 1)1, k—2;

j1 =1, 2, ..., m, m is the number of samples in set C;
j2=1,2, ..., m, m, is the number of samples in set C.
Since, v, v, = 1, vi y, = -1, v, y; = 1, the above
equationscould be expressed as:
AF, = max( 3, ( ))*Z( )+mm(2 (

110 rrpec G Ky 1560

UAE = Y —remax( Y (=)

#x;C,a el Tl o rjel 2

Algorithm of ASVs selection based on flexible Average
operator

Algorithm description: Because the defimitions of
attraction AF and UAF between samples are based on the
square of distance, the definition domain of all the data is
mn [0, 8) interval. With the comprehensive consideration of
the two kinds of attraction, the algorithm of ASVs
selection based on flexible Average operator
(ASVs FAQ) is described as follows:

Step 1: Determine the threshold value & of data
reduction percentage, let Sup Vec = @,
Sup Vec, = @, Sup Vec,= ©, MAF ;= @,
MAF, =@

Compute UAF,, AF, of positive sample x; and
UAF,, AF,, of negative sample x; respectively

Step 2:

Step 3: Sort UAF,, UAF,, AF, and AF, in descending
order and assign the results to sets SUAF,
SUAF,, SAF, and SAF, respectively

Compute generalized correlation coefficient h
between UAF, and AF, of positive sample x;;
compute generalized correlation coefficient h
between UAF,, and AF,, of negative sample x,

Step 5: Forany x—~C,

Step 4:

if h=1, MF, = max(UAF,, AF,)

it h= 075, MF, = (1-UAF, )(1+AF, )"

if h = 05 MF, - (UAF+AF, +2UAF, AF,)
(2+UAF, +AF,)

if h= 0, MF,, = min(UAF

Otherwise:

AFip)

12

g QUCUARS A AR
O+ UAE ™ + (L + AF, )"

Similarity, for any x—C, compute Mf,. Here,

m = (3-4h)/4h(1-h), h-[0, 1].

Step 6: For any x,—C,, MAF, = MAF, = {MF, }; for any
x—~C,, MAF, = MAF, —{MF_}
Step 7: Sort MAF, and MAF,, in descending order
Step 8: For any x,—C_, suppose q is the serial number in
AF, Il g = 8. MAF,|, Sup_Vec, = Sup_Vec,~
ix}; Similarity, for any x—C,, If g = 8.[MAF,,
Sup Vec, = Sup Vec,—{x}

Step 9: Sup Vec = Sup_Vec,~Sup Vec, finish
execution
Here, MAF,|, is the number of positive samples,

IMAF, | 1 the mumber of negative samples. According to
the different number and distribution of positive samples
and negative samples, & could be defined as different
value.

Parameter estimation and experiment results: The

problem is different, the definition of peneralized

correlation coefficient h is different. How to determine h

15 a key problem 1in the practical applications. In ASVs

selection algorithm, parameter h is defined as follows.
Forany x—C,;:

o Ifjlem,.p h=1

o  Ifj2zm,.puh=0

»  Otherwise, 51 = 1-G1-1)/(m.-1),
h=(s1+s2)/2.

$2 = 142-DAm.-1),

Here, j1 1s the serial number in SUAF,, j2 1s the serial
number in SAF,; 0 = p = 1, usually 10% = p = 20%.
Similarity, the same for any x,—~C,.

5383



Inform. Technol. J., 12 (19): 5377-5385, 2013

07 1
() Ll # Positive sample
Ergy wi o « "« 7 | +Negativesample
06 *.+ * * . & % % w | fpogtiveASV
. L Negative ASV |
05| : : e
. g H
04 J 4 BT : g
a & 4 g 8 B & B g Wy
) % u L I T B i
03¢ . o ¥ i
* Y .
E} + - + r
02 T + + HAT . *. ¥ 47
+ ¥ = T ¥ ¥ b R
b 4 * + 4
01 F + i i s 1 . & & . 4

00" | | | | | | | \ \ i
0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

070 ¢
(©
0.65.)
0.60 |,
055, .

050 e
045l .
040 |
035 *® + L
030 |* ; &

0.25 .|

0.20+ LA

09 r

(b) ) i'ﬁos ivesample

SR e BB WS 4 Negative sample
08 * =« L "Fa ¥, sty PostiveAsv

T T ) Wt ol B eNegative ASV
0.7 F v el T & g -"E H 1_‘1' b o4

- nw, b . el A &
E - 4 "Fa o,

0.6 b b S g # ,, +

{ o e LT 4 " + * ¥
05 Sy '. E * r‘ +.

s - HE T T
04 . - TR + i

I Y. + " +

'ii-*,.c R :

03 | 20 B, 4

ST *o et T
0.2 | i T Y e g R

+ . e ¥ +
T Y eme Toae g

01 1 1 1 £ 1 1 1 1

0.20 0.30  0.40 0.50 0.60 0.70 0.80 0.90

i Positivesample
- Negative sample

0.1 0.2 0.3 0.4

s Positive ASV
“Negative ASV
L]
&
L] kS
L] &
* -
L
* i i +|
0.5 0.6 0.7 0.8

Fig. 2(a-c): Sample distribution chart (a) Linear separable and boundary clear, 102 positive samples and 159 negative
samples, & = 0.2, (b) linear un-separable and boundary clear, 165 positive samples and 174 negative samples,
8 = 0.25 and (¢) linear un-separable and boundary unclear, 49 positive samples and 52 negative samples,

8=1035

We use the parameter estimation method for h
described above to apply the flexible Average operation
model on [0, 8) to the ASVs selection algorithm.
Meanwhile, for simplicity and without losing the
universality, we use three different random sample
distributions in two dunension space to illustrate, as
shown in Fig. 2. Here, each simple has two attributes (i.e.
two - dimensional coordinate) and belongs to one class
(<. or “*™). There are three cases, classification surfaces
m (a) and (b) are clear, but samples in (a) are linear
separable and samples in (b) are linear un-separable;
classification surfaces in (c) is unclear and the samples are
linear un-separable; From Fig. 2, we can see that ASVs
close to or on the boundary could be selected for both
cases. If these ASVs are used to train the SVM, the
majority of the samples will be reduced, the training
efficiency will be raised greatly. And we have proven this
n other experiments.

CONCLUSION

Average operation reflects the logical compromise of
two different truth value x, y to the same proposition. The
result of the compromise is required between x and y and
satisfies the idempotent property. Obviously, for the
flexible Average operation, the range of the value is on [x,
v];if x, v is partial false, then M(x, v, h, k) is partial false;
if %, y 18 partial true, then M(x, v, b, k) 1s partial true, but it
1s not satisfied on the contrary; if M(x, v, h, k) 15 partial
false, then min(x, y) is partial false; if M(x, y, h, k) is partial
true, then max(x, v) is partial true, but it is not satisfied on
the contrary. These cannot be expressed by logic AND or
OR.

In practical applications, many logic reasomning
controls must be accomplished in their own definition
domains. Physical meaning and the operation rule are
clearer 1f the satisfactory degrees are expressed naturally.

5384



Inform. Technol. J., 12 (19): 5377-5385, 2013

For example, it is more direct to use [0, 8) to represent the
degree in no upper limit problems. So, the definitions of
flexible logic operation models on [0, &) interval are
necessary.

In flexible logics, operation models are generated
based on the principal of modifying central base models
by generators. This study generate [0, 8) value flexible
Average operation model by using [0, 8) value exponential
T-generator cluster to modify the central Average
operation model. Meanwhile, the study designs an
algorithm to use the model for ASVs selection. Reference
(T1a, 2009) discussed the equal/unequal weighted flexible
Average operation model on [0, 1] and [a, b] space. In
fact, the same problems on [0, 8) interval also deserve
further research.

Through the Average operation model generation
process, we noticed that flexible logic operation models
seem too complex, but that is truly what they are. Usually
there are two ways to reduce the complexity in
applications-by software or by hardware. We can program
standard modules to achieve the models’ function; we can
also implement the operations models by physical
apparatus.
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