http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 12 (20): 5415-5423, 2013
ISSN 1812-5638 / DOL: 10.3923/1t).2013.5415.5423
© 2013 Asian Network for Scientific Information

Efficiently Indexing Sparse Wide Tablesin Cloud Comnputing

"“Huang Bin and *Peng Yuxing
"Department of Computer, Huaihua University, 418008, Huaihua, China
*School of Computer Science, Wuhan University, 430072, Wuhan, China
*National Lahoratory of Parallel and Distributed Processing,
National University of Defense Technology, 410073, Changsha, China

Abstract: For its perception of unlimited resowrces and infinite scalability, Cloud Computing has emerged as
a pervasive paradigm for hosting? data-centric applications in large computing infrastructures. The data
produced by these applications are essentially sparse and wide and may change schema frequently, traditional
relational data model 1s mappropriate for their data management. A new data model, called Sparse Wide Table,
was introduced for this task. Unfortunately, we have to face many challenges in building the secondary index
for Sparse Wide Table in cloud, as the distributed and column-oriented storage which eliminates a number of
NULLs. In thus study, we present a three-level index scheme for efficient data processing in the Cloud. Our
approach can be summarized as follows. First, we build an mndex for each column by which the records can be
rebuilt easily. Second, we build a bitmap index for each storage node which only indexes the data residing on
the node. Third, we organize the storage nodes as a structured overlay and each node maintains a portion of
the global index for the all different data. The global index 1s a bitmap index to indicate the node each data
resides . Finally, based on the three-level index scheme, some query algorithms are implemented. We conduct
extensive experiments on a LAN and the results demonstrate that owr indexing scheme is dynaniic, efficient and

scalable.

Key words: Cloud computing, bitmap, Index, wide table, column-oriented storage

INTRODUCTION

Now, [data-centric web applications have become
very popular. They provide the wide variety of Internet
services based on massive data. For its perception of
unlimited resources and infinite scalability, Cloud
computing has emerged as a pervasive paradigm for
hosting | data-centric applications in large computing
infrastructures. Currently, the Internet scale applications
in cloud computing mainly include the following four
broad categories: (1) New generation of e-commerce
system, e.g., Amazor, (2) Data publishing and ammotating
services based on Web 2.0, such as Delicious, Flickr,
Google Co-op (3) Search Engine, such as Google and
(4) Some novel web applications such as Google Base.

Data: These applications bring a large amount of new
type of data whic have following characteristics:

The dataset 1s
petabyte-scale and increases

* Massive: terabyte-scale even
constantly. Cloud
computing can meet the requirements, as it provides

scalable cluster storage by partitioning the dataset

into a number of small pieces called data shards. As
a distribution unit, each data shard is stored on a
umgque storage node

» Large No. of columns: For example, (Agrawal et al.,
2001) points out that in an e-commerce marketplace
for the electronics industry the catalog may contain
2000 categories, with 5000 attributes per category.
The current database system always has a limit on
the numbers of columns in a table. For instance, the
maximal number of the column in DB2 15 101 2, Oracle
too

» Sparsity: Though the dataset has a great many of
attributes, most objects in the dataset have non-null
values for only a small number of these attributes. So,
the data 1s lnghly sparsely populated, m other words,
a lot of attributes are NULLs

+ Constant schema evolution: The increasing of
heterogeneous data brings the table into frequently
changing which 1s expensive for conventional
relation database

These new characteristics above make conventional
relational database not support for representing, storing

Corresponding Author: Huang Bin, Department of Computer, Huaihua University, 418008, Huaihua, China
5415

Inform. Technol. J., 12 (20): 5415-5423, 2013

and managing these datasets efficiently, because the
prevalent n-ary horizontal representation introduces a
large number of NULLs which waste storage space and
the structured query performance 1s deteriorated seriously
as the data records are wide and the query just focuses on
a few columns. The current practice to solve this problem
15 to adopt the column-oriented (Yang et al., 2008,
Stonebraker et af., 2005; Abu Sayed and Hoque, 2002;
Bonez et al., 2005, Chang et al., 2006) sparse Wide Table
(Yu et al., 2008; Abadi, 2007). Based on the standard
relational data model, the wide table logically stores a
sparse dataset m a single table (1e., each column
represents a distinct attribute and each row represents an
object), employs
umplementation mechamsms to represent and store data.
The mechamsms eliminate NULLs and reduce the waste
of storage space; they also improve query performance by
only reading these data of some attributes relevant with
the query than all attributes (Aguilera et al., 2008).

As mentioned 1 the 2.1, three data models are
employed for representing and storing SWT and they are
respectively: 2-ary, 3-ary and the hybrid of the former two
(Yang et al., 2008). Though they eliminate NULLs, they
result in some challenges n building secondary index.

however, it column-oriented

Index: When the entire sparse data set is stored in a
single table, it 1s crucial that we mimimize the need to scan
the whole table. A common approach to avoid table scans
is indexing.

Currently, only the primary index is built by either
employing a pure key-value data model, where both key
and value are arbitrary byte strings (e.g., Dynamo
(DeCandia et al., 2007), or its variant, where the key is an
arbitrary byte string and the value 1s a structured record
consisting of a number of named columns (e.g., Big Table
(Chang et al., 2006) which supports efficient retrieval of
values via a given key or key range). However, many
applications also need the secondary index for improving
query efficiency. In real world, users tend to query data
with more than one key. For example, i1 an online video
system, such as Youtube, each video could be stored in
a key-value store with a unique video ID as the key and
video information, including title, upload time and number
of views as the value. Although the video can be
efficiently retrieved via video 1D, a common scenario is
that the end user wants to find videos with given titles or
within a date range. Therefore, the secondary index 1s
necessary for the data in cloud.

Currently, only inverted indices are achieved by
running a MapReduce (Dean and Ghemawat, 2004) job
that scans the whole wide table and produces the
necessary second indices in an offline batch menner.

Although, inverted indexes avoid table scans for keyword
queries, queries.
Furthermore, the mverted index built by this approach is
not up-to-date and newly inserted tuples cannot be

they ceammot be used for range

queried until they are indexed. For instance, when a new
item 15 1nserted mto Google Base, the item could be
delayed for one day to be seen by users.

So, B-tree indices or their equivalent must be used.
Unfortunately, we have to face the following challenges
in building the secondary index for Sparse Wide Table in
cloud:

» The distribution of data and scalability of resources
require a distributed and scale index for the dataset

s After a wide table with N columns 1s stored based on
column-oriented storage technology, N attribute
values in same row 1s laid n N column file with
different location, for example, for the same record,
the location of the value of attribute I in column file
I 1s X, however, it is Y for the value of attribute I in
column file J. This results in some problems with
building a secondary index

Contributions of this study: This study presents the
C8G-index, a secondary index scheme for SWT in cloud
storage systems. It is taillored for online queries and
maintained m an incremental way. The CSG-index
supports usual dictionary operations (insert, delete and
lookup), as well as range search with a given key range.
It shares many implementation strategies with
shared-nothing databases (DeWitt and Gray, 1992),
peer-to-peer computing (Crainiceanu et «l., 2007,
Jagadish et al, 2005), column-oriented storage
(Yang et af., 2008, Stonebraker et af, 2005;
Abu Sayved and Hoque, 2002; Boncz et al, 2005
Chang et al., 2006) and existing cloud storage systems
(DeCandia et al., 2007, Ghemawat et al, 2003).

CSG-index consists of three components: CF-index,
DS-index and global-index For the variety of the location
of all attribute values in the same row, the CSG-index
builds a CF-indexfor each column in each data shard. The
index 18 an ordered list of the surrogate-handle pair
according to the surrogate order. The swrogate is an
identifier of a row data object and may be either a
primarykey or an OID. The handle is the disk block
number of the node.

Instead of building an index for the whole dataset, the
CS5G-index builds a local bitmap index for each data shard
named as DS-index. The index 1s a distribution unit of the
CSG-mmdex which 15 stored and maintained on a umque

5416

Inform. Technol. J., 12 (20): 5415-5423, 2013

index server. C3G-index relies on this index distribution
technique for desired scalability. Queries are served by
searching all qualified index shards.

As the data set is partitioned into multiple data
shards and each mndex server 1s responsible for query over
its local DS-index, the CSG-index builds a Global-index to
be aware of and optimized for the form of dataset
partitioning. To route queries among the servers, all index
servers are organized as a structwed peer-to-peer
network, BATON (Tagadish et al, 2005). All different
values in some attnibute among all data shard are split into
N equal-size portions. Each index server stores one
portion and builds a global bitmap index for its portion.
Each index entry in the global bitmap index is a s,-handle
pair, where s, is the secondary key that will be indexed
and handle is a bitmap which could be used to fetch the
corresponding nodes which the s, resides m. A query
routing algorithm traverses the network with neighbor
links and returns all s,-handle pairs.

Compared with recent studies on SWTs and indices
technologies in cloud computing, our contributions of
this study are summarized as follows:

¢ To the best of owr knowledge, the C5G-index is the
first secondary indexing mechamsm designed to
support structured range queries and point gueries
over column-oriented SWTs prevalent in cloud
computing. The recent studies on SWTs, mainly
focus on optimizing the storage scheme of datasets
(Chu et al., 2007, Beckmann et al., 2006) and inverted
mdices (Yu et al., 2007). CG-index (Wu et al., 2010)
proposes the secondary mdexing mechamsm only for
row-oriented structure data in cloud computing

¢ The global search in the CS3G-index is performed in a
accurate data shard set in parallel, different from
CG-index (Sai et al., 2010) which involves redundant
data shard

+ We present a novel query processing strategy for
structure queries over the whole SWT which is
suitable for any range query and point query

The rest of the study is organized as follows: Section
2 reviews related work. Section 3 introduces owr system
architectiwe. Section 4 presents the proposed index
scheme in detail. Section 5 presents query algorithms.
Section 6 empirically validates the effectiveness and
efficiency of our proposed indexing scheme. We conclude
in section 7.

RELATED WORK

Column-oriented wide table: Currently, three data models
are employed for representing and storing the wide table
and they are: 2-ary, 3-ary and the hybrid of the former two.

¢ 2.ary model: The Decomposed Storage Model
(DSM) (Copeland and Khoshafian, 1985,
Khoshafian et al., 1987) decomposeshorizontal table
into as many 2-ary tables as thenumber of columns.
Each 2-ary table contains a swrogateand one
attribute. A surrogate is always the object identifier.It
1s represented as:

Ry (surrogate, attribute value)

Figure 2 shows the 2-ary vertical representation of
thetable in Fig. 1.

¢ 3-ary model: A single row in a horizontaltable is split
into as many rows as the number of non-NULL
attributes. FEach 3-ary table object
identifier,attribute name and attribute value. The
schema is:

contains

R (O1d, name, value)

Figure 3 shows the 3-ary vertical representation of
thetable in Fig. 1.

¢+ Hybrid model: The hybrid representation first
employs binary representation for each column

Oid A B C D E
1 b 1 1 c L
2 1 g n 1 f
3 1 1 d € i
4 1 a 1 L €

Fig. 1: A horizontaltable

@ sur Value @ sur Value
1 b 1 ¢
3 S
(b) sur Value
2 b © sur Value
4 a 2 f
sur Value | sur sur
2 b 1
4 g 2
3
© sur Value 4
3 d

Fig. 2(a-e): 2-ary binary representation

5417

Inform. Technol. J., 12 (20): 5415-5423, 2013

Name Value

J;U)U)l\)l\)'—"—‘g
[=N

w|olao|=|o|>
oo |a]=e |e

Fig. 3: 3-ary vertical representation

@ Row Qualifier Value
1 A b
® Row Qualifier Value
2 B g
3 C d
4 B a
© Row Qualifier Value
1 D c
2 E f
3 D e

Fig. 4(a-c): hybrid representation

families and usesthe vertical representation in each
column family table. Suppose there are three
columnfamilies of the table in Fig. 1, family 1 just has
attribute A family 2 has B and C, family 3 has D and
E. The tableusing hybrid representation is described
inFig. 4

BATON: BATON is a balanced tree structure overlayon
a peer-to-peer network capable of supporting both exact
queries and range queries efficiently. Usmgamn-order
traversal, it attains a linear ordering ofthe nodes in the
tree. With this, each peer in thenetwork stores a link to 1its
parent, a link to its leftchild, a link to its right child, a link
to its left adjacentnode, a link to its right adjacent nede, a
left routing table to selected nodes on its left hand side at
thesame level and a night routing table to selected
nodeson its right hand side at the same level. While the
tree structure 1s binary, it hasscalability and robustness
similar to that of the B-tree. An immediate benefit of a tree
structured overlay network is to convermently support for
range queries whichcannot be supported by conventional
distributed hash tables. In spite of the tree structure
causing distinctions to be made between nodes
atdifferent levels in the tree, theload at each node is
approximately equal.

Tt assigns to each node, both leaf and internal, arange
of values. Tt records for each link the rangeof values
managed by the node at the target of thelink. The range of
values directly managed by a node isrequired to be to the
right of the range managed byits left subtree and less than
the range managed by itsright subtree. With this, the
BATON overlay structure mmmediately behaves like an
index tree.

Indices for large-scale data: Khoshafian et al. (1987), a
distributed B+-tree algorithm was proposed for indexing
the large-scale dataset in the cluster. The B+-tree 1s
distributed among the available nodes by randomly
disseminating each B+- tree node to a storage node (also
called server node in). This strategy has two weaknesses.
First, although it uses a B+-tree based index, the index is
mainly designed for simple lookup queries and is therefore
not capable of handling range queries efficiently. To
process a range query [1, u], it must first locate the leaf
node responsible for 1. Then, if u i1s not contained by the
leaf node, it needs to retrieve the next leaf nede from some
storage server based on the sibling pointer. Such form of
retrieval continues until the whole range has been
searched. Second, it incurs high maintenance cost for the
server nodes and huge memory overhead in the client
machines, as the client node (user’s own PC) lazily
replicates all the corresponding internal nodes.

Sai et al. (2010), a scalable Bt-tree based indexing
scheme was proposed for efficient data processing in the
Cloud. Tt builds a local B+-tree index for each storage
node which only indexes data residing on the node.
Then it orgamzes the storage nodes as a structured
overlay-BATON and publishes a portion of the local
B+-tree nodes to the overlay for efficient query
processing. This strategy has three weaknesses. First, in
local-index, 1t suffers too much same value 1n leaf nodes,
as a result,it slows query down. Second, as the query
range may be narrower than the range of nodes published
to CG-index, the result from searching in CG-index is
inaccurate and it results in some unwanted nodes
searching in local-index. Third, the CG-index ignoresthat
some rang values which are resided in multiple nodes may
be overlap with each other.

Both the CG-index and the distributed B+-tree are
used to build mdices for row-criented dataset, whereas
the CSG-index does for the column-onented SWT. What’s
more, the CSG-index has some differences with them.
Compared with the CG-index, it can attain an accurate
node set from the global-index of the CSG-index.
Compared with the distributed B+-tree, each index node
maintaing a portion of all index entries and it can
efficiently support point queries and range queries.

5418

Inform. Technol. J., 12 (20): 5415-5423, 2013

SYSTEM ARCHITECTURE

Figure 5 shows the system architecture of our cluster
system. A set of low-cost workstations join the cluster as
storage (or processing) nodes. This is a shared nothing
and stable system where each node has its own memory
and hard disk. To facilitate search, nodes are commected
based on the BATON protocol. Namely, if two nodes are
routing neighbors in BATON, we will keep a TCP/TP
connection between them. Note that BATON was
proposed for a dynamic Peer-to-Peer network. It 1s
designed for handling dynamic and frequent node
departure and joining. Cloud computing is different in that
nodes are orgamzed by the service provider to enhance
performance. In this study, the overlay protocols are
only used for routing pwposes. Amazon’s Dynamo
adopts the same idea by applying consistent hashing for
routing in clusters. BATON is used as the basis to
demonstrate our ideas due to its tree topology. Other
overlays supporting range queries, such as P-Ring and
P-Grid (Crainiceanu et al., 2007), can be easily adapted as
well.

In our system, data 1s randomly distributed to storage
nodes based on their primary keys; as a result, data are
partitioned into N data shards if there are N nodes in owr
cluster. Employing the column-oriented storage
technique, we store each data shard into the same many
column-files as the attribute of a row data object. We
build an index for each column-file. The index is located in

the lowest level in the CSG-index. It is an ordered list of
the swrogate-handle pair according to the swrogate
order. The surrogate 1s an identifier of a row data object
and may be either a primary-key or an OID. The handle 1s
the disk block number of the node and could be used to
fetch the corresponding value in the cloud storage
system. By the swrogate, we can rebuild the row
corresponding to the surrogate.

To facilitate search in the attribute, each storage node
index its local data by building a B+-tree for different
values, its leaf nodes are key-bitmap pairs. A bitmap for
every different value indicates which records the value
resides in. In this way, given a value, we can efficiently
receive a bitmap by which a swrrogate set can be built
easily.

Every node in the BATON manages a contimious
range value, so this index information of these values in
the range is stored in the node which is a key-bitmap pair.
This bitmap indicates the value resides in which nodes.
These indexes compose the Global-mdex 1n our system.
To process a query, we first look up the Global-index for
the corresponding storage nodes based on the overlay
routing protocols. And then following the bitmap of the
Global-index, we search the local ndex in parallel

CSG-INDEX

In our system, data 1s randomly distributed to storage
nodes based on their primary keys; as a result, data is

Querlay Network

Key:attributeName Key:attributeName Key :atributeName Key :attributeName
b Range(RORY] Range: (Rj,RK] Range:(Rx,Ry] Range(Rn-1,Rn]
Index) | ROJ..f ROi |..] R1 Ril..] Rji|...| Rk Rx .| Rxi {..| Ry |[[[Rn-1]..] Rni |...| Rn

GBMOI IGBMOi GB!\Q GBMj [GBMjif [GBM GBMx| [GBMxil |GBMM|||GBMOI |GBMni| |GBMn
Locd \ \/
Tndzx —]

(BM, == LBM, (BMy mem LBM, [BM, e LBM, [BM, == LBM,

Fig. 5: System architecture

5419

Inform. Technol. J., 12 (20): 5415-5423, 2013

partitioned into data shards and these records whose
keys are continuous may be distributed to different
nodes. For a non-key attribute, 1t has a lot of same values.
To process queries i the cluster, a traditional scheme will
broadcast the queries to all the nodes, where local search
1s performed in parallel. This strategy, though simple, 1s
not cost efficient and 15 not scalable too. Another
approach is to maintain data partitioning information in a
centralized server. The query processor needs to look up
the partitioning information for every query. The central
server risks being the bottle-neck. To facilitate search in
a non-key attribute, we build the CSG-index: the global
bitmap mdex and the local bitmap index. The former 1s
used to seek nodes the required value resides in and the
latter 1s used to search the record address the required
value m the local data of each storage node.

CF-index (column file-index): As mentioned inthe 2.1, a
SWT may be represented into one of three data model
(2-ary,3-ary,hybrid). This section introduces their index
methods, respectively.

¢ Indexing 2-ary: The index is an ordered list on the
swrogate order of each row record Each index entry
is a triple(surrogate,blk,length), where the blk is the
disk block mumber of the node and the length 1s the
byte number of the attribute value. It i3 represented
as:

L, (surrogate,blk, length)

The index is suited for fixed or variable length
attributes as the length mdicates the data length read. As
the values in each attribute are stored in a data file
individually, the index only finds values in an attribute
and cannot find the values in others attributes at the same
time. If the indexed attributes have their index files and
others attributes do not, the structure query involving
some attributes which are not indexed will scan these data
files in sequence. As a result, it 15 an inefficient search.
Thus, for handling the structure query with arbitrary
number of attributes, we build a CF-index for each
attribute m the column level. Supposed AP stand for the
processed attribute set, the algorithm of query and rebuild
a record is:

Algorithm 1: b _query (AP, sumrogate)

1:foreach (4; in AP)

2:Achieve the blk and length corresponding to swrrogate the from the §, of
Ay
3:Achieve the value from the data file of A;
4:data set+value

¢ Index 3-ary: Like the index of 2-ary, the index of 3-ary
15 also an ordered list and each index entry 1s a
surrogate-blk pair. It 1s represented as:

I (swrogate, blk)

As the values of all attributes are stored 1 a data file,
only an index file is needed to maintain. However, it is
needed to rebuild a record by analyzing the read data bulk
and choosing the values of wanted attributes when a
structure query with multiple attributes is processed. The
algorithm of query is:

Algorithm 2 v_guery(AP, surrogate)

1:Achieve the blk corresponding to the surrogate fiom the T,
2: repeat

3:read arecord R

4:if the attribute A of R in AP

5: data set?the value of R

6: untilthe surrogate of R ?surrogate)

¢ TIndex hybrid: Like the index of 3-ary, its index is
represented as:

I (surrogate,blk)

However, different from the index of 3-ary, the
number of I, 15 equal to the number of the attribute
clusters. So, the algorithm of query is:

Algorithm 3 H_query(AP, surrogale)
1: foreach (A; in AP)
2: dov_query over the I, and data file of A

DS-index(data shard-index): In cloud computing, due to
a lot of values are same for a non-key attribute. The same
value may reside in multiple nodes, one of while may
has many duplicate values. If indexing these values by
B+t-tree, the index entry is too much. Tt results in pages of
the index data file very much and the B+-tree is very high,
as a result, it slows query down. For a data set in which
much data has many duplicate values, the bitmap index 1s
a good index method; especially m cloud computing,
query 1s more than modification. Thus we build a bitmap
index as the data shard-index. The bitmap indicates the
OIDs of the wanted value in the local data shard. To
facilitate find the bitmap of the required value, we build a
B+t-tree for all bitmaps which leafs are key-bitmap pairs.
We use run-length encoding (Garcia-Molina et al.,
2000) to compress all bitmaps which can be used to make
the number of bits closer to n, independent of the number
of different values (DeWitt and Gray, 1992). One
advantage of run-length encoding is to reduce storage

5420

Inform. Technol. J., 12 (20): 5415-5423, 2013

requirement. Another advantage is that the last insert
value only needs to modify its bitmap while others do not.

Global-index: Toroute queries among theservers, all index
servers are organized as a structured peer-to-peernetwork,
BATON. All data are randomly distributed to storage
nodesbased on their primary keys; as a result, the same
valueisstored in multiple nodes for their different primary
keys. To facilitate search, we build a distributed global-
index for the attribute.

As previously mentioned, BATON 15 a balanced tree
structure in which each node, both leaf and internal, is
assigned arange of values andusinganin-order traversal,
it attains a linear ordering of the range of values manapged
by each node in the tree. With this advantage, we
organize index entries of some attribute based on BATON.
Supposed the range of the attribute value 1s [Lh) and the
BATON has N nodes, we split the range into N equal-size

continuous portions (P, P,,...P,..., P,). There are:
. h-1., . h-1
P=[l+{i-1)x—.1 —_—
[l+{3-1)x N +ix N)
and:
i=N
=1L
i=1

Each portion 18 in order assigned to a node on the
linear ordering of the nodes in the BATON which is
attained by using an in-order traversal. Thus the range
managed by 1th node 13 P,. Therefore the indexing scheme
is distributed and scalable.

In each node, a B+-tree 1s built for these values
managed by it and belonging to the global index. Each
index entry is a s,-handle pair, where s, is the secondary
key that will be indexed and handle is an bitmap which
could be used to fetch the corresponding node which the
sk resides in.

When a new value is inserted, we obtain a node
which range contains the value based on BATON's
routing protocols and publish an index entry to the global
index managed by the node.

QUERY PROCESSING

Our index scheme 1s capable of supporting both point
queries and range queries based on the structure and
protacols of the BATON. For a dimension index, the point
query 1s the extreme of the range query (where 1 = h), so
this section only introduce the range query with a
dimension index.

Given arange query Q(AP, 1 = A, = u), we first search
the global index to locate the B+-tree nodes whose ranges

overlap with Q, then find in DS-index and get a swrogate
set, finally find and rebuild the record relevant to AP.
Algorithm 4 shows the range search algorithm. Starting
from the lower bound of Q, we follow the right adjacent
links to search sibling nodes until reaching the upper
bound of Q.

Algorithm 4 querv(AP, I=A—u)

1:Ni = lookup(D)

2:while(Ni =Ni.right and value<u)

3: bmp = bmp op value.bitmap

4: Wi send the query to these nodes of bmp[i] =1 and they do concurrently:
5: search in DS-index, get a surrogate set

6: search in CF-index for each surrogate and rebuild the record

7: return the record set to Ni

8: aggregate the records from these nodes of bmp[i]=1,and return

EXPERIMENT EVALUATION

Experiment environment: The experiment enviromment
15 1 ocated m a LAN and contams ten computers with a
2.8 GHz Pentium dual-core processor, 2GB memory and
160 GB storage. All computers are commected into a
subnet by a two-layer switch which ports” speed 1s
1000 Mbps. Our system is implemented in Java 1.6.0. In
our system, each node hosts 500k tuples. The tuple format
18 (key, string). The key 1s an integer key with the value in
the range of [0, 10°] and the string is a tandomly generated
string with 50 bytes.

In experiment, each node 1s both a client which 1ssues
query or update command and an index server which
serves query requests. We generate exact queries and
range queries for the keys in umform distribution The
major metrics in the experiment are query throughput.

Performance of query: Figure 6 shows query throughput
under different search ranges. The best performance 1s
achieved for the exact search query (s = 0).When the

x10°

407 4 s=0.00

{\3-5_ —m—s=0.04

—o—s=0.10
3.0

Query throughout (operations sec
(89
(=}
1

0.5 T T T T T 1
4 5 6 7 8 9 10
No. of nodes

Fig. 6: Throughout of query

5421

Inform. Technol. J., 12 (20): 5415-5423, 2013

Update throught (operatinos sec ')

24 T T T T T T
20 40 60 80 100 120

Elapsed time (sec)
Fig. 7: Update throughput

search range is enlarged, throughput degrades as more
nodes are involved. Scalability increases when we
mncrease the number of processing nodes. Figure 7 shows
the update throughput of the system (in logarithmic scale)
where the node generates umform insertions. Their
scalability increases when we increase the number of
processing.

CONCLUSION

We have presented the design and implementation
of a scalableand high-throughput mdexing scheme
for SWTs in Cloud. We first build a index foreach column
by which the records can rebuild easily, then assume a
local bitmap index 13 built for thedataset stored m each
storage node. And to enhance the throughputof the
system, we orgamze storage nodes as a structured
overlayand buld a global bitmap index. Each
computing node stores a portion of all index entries.
Based on the overlay’s routing protocolthe CSG-index
can support point queries, range queries. Our scheme has
been implementedand evaluated in a TLAN.The
experimental results show that our approach isefficientand
scalable.

ACKNOWLEDGMENT

The authors would like to thank for the support
by National Basic Research Program of China (973
Program) under Grant No.2011CB302601, National High
Technology Research and Development program of
China (863 Program) under Grant No. 2011AA01A202,
Science and technology program of Hunan Province
under Grant2013FJ4335 and 2013FT4295 and the
constructing program of the key discipline in Huaihua
University.

REFERENCES

Abadi, D.J., 2007, Column-stores for wide and sparse data.
Proceedings of the 3rd Biemnial Conference on
Innovative Data Systems Research, January 7-10,
2007, Asilomar, CA, USA.

Abu Sayed, M. and L. Hoque, 2002. Storage and querying
of high dimensional sparsely populated data in
compressed representation. Proceedings of the 1st
EurAsian Conference on Information and
Communication Technology, October 29-31, 2002,
Tran, pp: 418-425.

Agrawal, R., A, Somani and Y. Xu, 2001. Storage and
querying of e-commerce data. Proceedings of the
27th International Conference on Very Large Data
Bases, September 11-14, 2001, Rome, Italy,
pp: 149-158.

Aguilera, MK., W. Golab and M.A. Shah, 2008 A
practical distributed B-tree.
Proceedings of the Large Data Base Endowment,
August 24-30, 2008, Auckland, New Zealand,
pp: 598-609.

Beckmann, I.L., A. Halverson, R. Krishnamurthy and J.F.
Naughton, 2006. Extending RDBMSs to support
sparse datasets using an interpreted attribute storage

scalable Very

format. Proceedings of the 22nd International
Conference on Data Engineering, April 3-7, 2006,
Atlanta, Georgia, pp: 58-58.

Bonez, P, M. Zukowski and N. Nes, 2005.
MonetDB/X100: Hyper-pipelining query execution.
Proceedings of the 2nd Bienmial Conference on
Innovative Data Systems Research, January 4-7,
2005, Asilomar, California.

Chang, F., I. Dean and S. Ghemawat, 2006. Bigtable: A
distributed storage system for structured data.
Proceedings of the 7th USENTIX Symposium on
Operating Systems Design and Implementation,
November 06-08, 2006, Seattle, Washington, DC.,
pp: 205-218.

Chu, E., I. Beckmann and I. Naughton, 2007. The
case for a wide-table approach to manage sparse
relational data sets. Proceedings of the 2007 ACM
SIGMOD International Conference on
Management of Data, JTune 11-14, 2007, Beijing,
China, pp: 821-832.

Copeland, G.P. and SN. Khoshafian, 1985 A
decomposition storage model. Proceedings of the
1985 ACM SIGMOD International Conference on
Management of Data, May 28-31, 1985, Austin,
Texas, pp: 268-279.

5422

Inform. Technol. J., 12 (20): 5415-5423, 2013

Crainiceanu, A., P. Linga, A. Machanavajjhala, J. Gehrke
and T. Shanmugasundaram, 2007. P-ring: An efficient
and robust p2p range mndex structure. Proceedings of
the 2007 ACM SIGMOD International Conference on
Management of Data, June 11-14, 2007, Beijing,
China, pp: 223-234.

DeCandia, G., D. Hastorun, M. Jampam, G. Kakulapati and
A. Lakshman et af., 2007. Dynamo: Amazon's highly
available key-value store. Proceedings of 21st ACM
SIGOPS Symposium on Operating Systems
Principles, October 14-17, 2007, Stevenson, WA,
USA, pp: 205-220.

DeWitt, D. and . Gray, 1992. Parallel database systems:
The future of high performance database systems.
Commun. ACM, 35: 85-08.

Dear, I. and 5. Ghemawat, 2004. MapReduce: Sinplified
data processing on large clusters. Proceedings of the
6th Conference on Symposium on Opearting Systems
Design and Implementation, Vol. 6, December 06-08,
2004, San Francisco, CA., pp: 10-10.

Garcia-Molina, H., I.D. Ullman and J. Widom, 2000.
Database System Implementation. Prentice Hall,
Upper Saddle River, New Jersey, pp: 225-231.

Ghemawat, 3., H. Gobioff and S.T. Leung, 2003. The
google file system. Proceedign of the 19th ACM
Symposium on Operating Systems Principles,
October 19-22, 2003, ACM, Lake George, NY.,
pp: 29-43.

Tagadish, HV., B.C. Ooi and Q. H. Vu, 2005. BATON: A
balanced tree structure for peer-to-peer networks.
Proceedings of the 31st International Conference on
Very Large Data Bases, October 04-06, 2005, Italy,
pp: 661-672.

Khoshafian, 8., G.P. Copeland, T. Jagodis, H. Boral and P.
Valduriez, 1987. A query processing strategy for the
decomposed storage model. Proceedings of the 3rd
International Conference on Data Engineering,
February 3-5, 1987, Washington, DC, TUSA,
pp: 636-643.

Stonebraker, M., D.J. Abadi, A. Batkin, X. Chen and M.
Chermack et al., 2005. C-store: A column-oriented
DBMS. Proceedings of the 31st International
Conference on Very Large Data Bases, October 04-06,
2005, taly, pp: 553-564.

Wu, S., D.W. Jiang, B.C. Oot and K.L. Wu, 2010. Ef?cient
b-tree based indexing for cloud data processing.
Proceedings of the VLDB Endowment, Vol. 3,
September 2010, Singapore, pp: 1207-1218.

Yang, B., WN. Qian and A'Y. Zhou, 2008. Using wide
table to manage web data: A swvey. Front. Comput.
Sci. China, 2: 211-223,

Yu, B., GL. L1, B.C. ©c1 and L. Zhou, 2007. One table
stores all: Enabling painless free and easy data
publishing and sharing. Classless Inter-Domain
Routing, pp: 142-153. http://www bibsonomy.org/
bibtex/163{f0c4{514993844aal 4a9bblcbal £8

Yu, B.,G.L. Li, B.C. Oorand L.Z. Zhou, 2008. One table
stores all: Enabling painless free-and-easy data
publishing and sharing. Classless Inter-Domain
Routing. http://www.comp.nus.edu.sg/~utab/paper/
c1drO7pl 6.pdf

5423

	ITJ.pdf
	Page 1

