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Abstract: A dynamical Bayesian testing method 1s proposed to examine feature information on performance
variation of time series with poor information in advance. Sub-series of time series are obtained via a regularly
sampling, a multidimensional information space is formed by phase-space reconstruction method, probability
density functions of phase trajectories are acquired with bootstrap and maximumn entropy theory, a referenced
sequence from phase trajectories 13 found by mimimum variance principle, the posterior probability density
function is established according to Bayesian theory and the mutation probability is defined in the light of fuzzy
set theory. At the given significance level, dynamical Bayesian testing for feature information on performance
variation of the poor information process 1s put inte effect with the help of the mutation probability.
Experimental mvestigation on vibration acceleration of a rolling bearing for space applications presents that
the method proposed can effectively detect feature information on performance variation of time series with the
unknown probability distribution and trend for the early detection of the hidden danger, thus avoiding serious
accident.

Key words: Information process, information-poor theory, Bayesian theory, performance variation, vibration

acceleration, rolling bearing

INTRODUCTION

Feature information is a series of data that can depict
performance variation of time series. In fields of science
and technology, feature information of many systems
must be tested m time for the early detection of the hidden
danger and safe system operation, therefore the theory of
feature information process has attracted much attention,
with many new findings.

For example, Wang et af. (2013) proposed a distance
feature information method for recognizing digital images
by the conservative smoothing, mean filtering, Gaussian
sharperung and binarization; Jukic (2013) proposed a
method for supervised featwre extraction for temsor
objects based on maximization of an approximation of
mutual information; Wang et al. (2013a) designed the
bag-of-words moedel of local featire information gamn for
the problem of indoor home scene classification;
Raytchev et al. (2013) established a new general
framework to obtain more distinctive local invariant
features by projecting the original feature descriptors into
low-dimensional feature space while simultaneously
incorporating also class information; Tee et al. (2012)
put forward a new multi-label feature selection method

that captures relationships between features and
labels  without transforming the problem mto
single-label classification; Bai et al (2012) presented
segmentation results by using multi-feature similarity
measure under information based clustering
framework, compared to pair wise sinilarity measure and
Kamandar and Ghassemian (2013) structured a new
supervised linear feature extractor for hyperspectral image
classification.

In many fields of science and technology at present,
studies of featwe information mainly rely on a known
probability distribution and trend in advance. For example,
the probability distribution 1s considered as a normal
distribution, a Weibull distribution, or a Poisson
distribution and the trend is regarded as a given potential
function and kernel function and wavelet basis function
and a piecewise linearized function (Ahmad et af., 2009).
If the probability distribution and trend 1s unknown in
advance, feature information of performance variation of
time series can be extracted hardly. Thus, information
analysis theory relied on prior mnformation of
probability distributions and trends encounters serious
challenges. This, in fact, belongs to the category of the
information-poor theory (Xia, 2012, 2012a).
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Poor information means incomplete and insufficient
mnformation, such as, m system analysis, a small sample,
an unknown probability distribution and trends without
any prior information and so forth. Time series with poor
information 1s a poor information process.

Based on the information-poor theory, a method for
dynamical Bayesian testing is proposed to examine
feature information on performance variation of time series
with poor information for the early detection of the hidden
danger, thus avoiding serious accident. Experimental
investigation on vibration acceleration of a rolling bearing
for space applications is conducted for corroboration of

the method.
MATHEMATICAL MODEL

Suppose performance data of a poor mformation
process in service are sampled R times and R time series
of performance data are obtained. Let X, stand for the rth
time series that is given by:

X, = (X, (0%, X, (0, %, (DT =12, R (1)

where x(h) 1s the hth datum i X; h 15 a sequence number,
h=1, 2, ..., HandH is the number of data in 3.

The rth time series X, is divided into D sub-series and
the dth sub-series is given by:

Xy = (X0, X g Qoo KDy XD ):d =1,2,., 0 (2

where x,, (1) stands for the ith datum in X, 1 for a
sequence number, 1 = 1, 2, ..., I and I for the number of
data which 13 expressed as:

-1 (3)
D

Applying the phase-space reconstruction method to
divide the dth sub-series X, into segments for essential
revelation of original dynamics of the poor mformation
process in service, a multidimensional mformation space
that consists of N phase trajectories can be obtained.

Based on chaos theory (Lv et al., 2002; Ionita, 2000),
the jth phase trajectory m the multidimensional
information space 1s expressed as:

Xml(j):(x"ﬂ,xm,...,x",j ..... x,m);j:I,Z ..... N (4
with:

X = X+ (1-Dws1=12,..,2 &)

and:

N=I-(uv-1lj (&)
where, N is the number of phase trajectories, v is the delay
time which can be solved by the autocorrelation function
method (Lv et al., 2002) and & is the embedded dimension
which is given by:

9

A |-

The phase trajectory X,(j) in Eq. 4 1s one eigen
trajectory. It can be employed for essential revelation of
original dynamics of the poor mformation process in
service.

According to bootstrap (Xia, 2012; Efron, 1979), an
equiprobable resampling with replacement from X,(j) is
implemented by following steps:

Step 1: Let the constant B be equal to 500000 and let the
variable b take a value 1, where B 1s the number
of the resampling samples and b is the bth
equiprobable resampling

Step 2: Let one datum be drawn by an equiprobable
resampling with replacement from X,(3)

Step 3: Let the step 2 be repeated & tumes, so that & data
can be sampled

Step 4: Calculate the mean y,(b) of & data which 1s
considered as one of the data in the generated
data series Y,

Step5: Addltob

Step 6: If b=B, go to the step 7, otherwise go to the step
2

Step 7: Let the generated data series be of size

B = 500000, so that many generated data are
obtained

Via steps 1-7, the generated data series Y, 1s gained,
as follows:

Y, = (V0. Y @0 ¥,y (0). X, (BY) (8)
with:
y.(by= li 0,(nb=12,.B 9
L

where, 0,(1) is the ith data obtained and v, (b) is the mean
of v data in the bth sampling.
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The origin moment of 3 ,(j) is as follows:
Mmm:li(yxa(b))mim:1=2=---’Mm (10)
B b=l

where M, is the highest order of the origin moments and
M., 18 the mth order origin moment.

Assume x 1s a random variable for describing
performance data of the poor information process.
According to maximum entropy theory, a probability
density function £,(x) 1s obtamned by:

f&x):exp[ﬁ mekJ (1D

where, ¢4, 15 the kth Lagrangian multiplier about 2, and

k=0,1,.... M,
In Eg. 11, the Lagrangian multiplier cy(k=1,
2, ..., M) can be solved by:

My
I x" exp[E cmxk]dx
Roa k=l .

m=12,.M, (12)

M, =

. Mgy
I exp [Z cmkadx
Rrq k=l

The first Lagrangian multiplier ¢, can be obtained
by:

Cy =—ln[_[ exp[gcmmedx] (13)

Rn

where, R, 1s the integrating range of x about X, ,(j).

TLet r =1 in Eq. 11, then the probability density
function of X,(j) about the first time series X, 1s obtained
as:

f;a(x)zexp{clm"'fqm){m] (14)

m=l

For the first time series X, let X,4(j) be both a prior
sample and a current sample and f,,(x) be both a prior
distribution and a current sample distribution. According
to Bayesian statistics, the posterior probability density
function of X,4j) is obtained as:

fia ()F, )

BT ok, Godx (15)

R

According to statistics, the mathematical expectation
E; of X,,(j) is defined as:

Ey = [ x,00dx (16)

Ry

and the variance D4 of X 4(j) is defined as:

Dy = [ (x— B, Ve, (x)dx (17)

R

According to the minimum variance principle, the
minimum variance D, is given by:

Dy = mingD, . D, 5, Dy 4o Dyp) (18)

1in

For the first data series, suppose the phase trajectory
with the minimum variance D, is marked by X,.;, and the
posterior probability density function of X, is marked
by Gdx). Define 3, and f,.(x) as the referenced
sequence and the referenced distribution, respectively.

For the rth time series (r= 2, 3, ..., R), let X ,(j) and
f4x) be the cumrent sample and curent sample
distribution, respectively, then according to Bayesian
statistics the posterior probability density function ¢, (x)
of X (3) 1s as follows:

(Prd(x) = j flmm(x)frd(x)d)( r=23..,R (1 9)

where, R, 13 the integrating range of x.
According to statistics, the mathematical expectation
E.,of X.(j) 18 defined as:

E,= j Xp, (Ndx;r =2,3,...R (20)

Ry
and the variance D,, is defined as:

D,= _[ (x-E )¢, x)dx;r=23..R (21)
Ro

Variance ratio of X,(j) to X, 18 defined as:

A o=Pu . 23 R (22)

Lrd

Imin

In the light of concept of intersection of fuzzy sets,
a mutation probability &, 4 1s defined as:

@, =1- Al (0 Ny () (23)

where A(d,(x)nd,.(x)) stands for the area of the
intersection of ¢ (%) and ¢, (x).

5715



001

-0.01
-002

uoIe1adxe eolreWayR N

-0.03

10 20 30 40 50 60 70 8 9N

0

Sub-series



Inform. Technol. J., 12 (20): 5713-5718, 2013

Variance ratic

10

05

n M0 20 A0 40 K1 /0 70 KRN 9N

Sub-series

Fig. 4: Variance ratio

10

o
15S)

Mutation probability

0 10 20 30 40 5 60 70 80 N
Sub-series

Fig. 5. Mutation probability

¢+ TFrom 8 November to 18 November, vibration
performance vanation becomes gradually sigmficant,
showing an early degradation phase

+ TFrom 23 November to 18 December, vibration
performance variation is complex and variable,
alternating significance and no significance and
revealing a transitional period from early degradation
phase to gradual degradation phase

¢+ On 23 December, vibration performance variation is
not significant, meamng a start of gradual

degradation phase

It can be seen from the above that the method
proposed is able to test feature information on rolling
bearing performance variation.

CONCLUSION

The dynamical Bayesian significance testing
method, under the condition of unknown probability

distributions and trends in advance, can examine feature
information on performance variation of time series with
poor information for the early detection of the hidden
danger, thus avoiding serious accident. Experimental
investigation on vibration acceleration of the rolling
bearing for space applications shows correctness of the

method.
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