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Abstract: In order to overcome the particle swarm algorithm easy to fall mto local optimal value and the lack
of late slow convergence, this study presents a cloud model based on adaptive particle swarm optimization
algorithm. The algorithm according to the fitness value of the particle populations of particles mto the near
optimal values closer to the optimal value and away from the optimal value of three subgroups and the
generation of different populations to adopt a different strategy to generate inertia weight, where the normal
cloud generator algorithm uses adaptive dynamic adjustment closer to the optimal particle subgroups of inertia
weight, get rid of the shackles of algorithms into local optimum value; in the iteration algorithm uses the normal
cloud to the mutation operation of the particle which makes the algorithm can quickly converge to the optimal
solution. In summary presented Could Adaptive Vanation Particle Swarm Optimization (CAVPSO) to solve the
multi-objective optimization problem of reactive power. Use standard TEEE30 node system to test simulation
results show that the use of CAVPSO algorithms to solve multi-objective optimization of reactive power
superiority.
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INTRODUCTION

Reactive power optimization of power system is the
structire of the system parameters and load conditions
under given conditions, in order to meet the system
operation mode constraint as a precondition, through the
optimization system control variables to maximize system
voltage stability, improve voltage quality and reduce
network losses (Liu et al, 2009). Tt has a non-linear,
multi-objective, multi-constraint, contaming  both
continuous variables and discrete variables and so on.
Currently on the reactive power optimization in many
ways, but the traditional classical algorithm has mevitable
limitations, it can’t deal with discrete variables (L1 et ai.,
2008), with the development of artificial intelligence and
computer technology, there have been many intelligent
algorithms such as genetic algorithms (Lou et al., 2005),
simulated annealing algorithm, immune algorithm (Xiong
and Cheng 2006), particle swarm algorithm and has been
successively introduced into the power system reactive
power optimization problem and achieve better results,
PSO (Kennedy and Eberhart, 1995) especially the most
prominent research. PSO by Kennedy and Eberhart in
1995 proposed a stochastic optimization based on swarm

intelligence algorithms, The advantage of this algorithm
1s easy to implement, easy to operate, with fewer
parameters, however, the particles in the search for early
convergence speed is too fast (Li et al., 2011), late in the
search, but easy to fall mto local optimun and the
convergence speed 1s too slow which is the main
drawback of the PSO algorithm (Zhao and T4, 2010).

The cloud model (Liu et af., 2005) theory and particle
swarm combined, according to the normal cloud model of
cloud droplets with randomness and stable tendency
characteristics, it uses normal cloud generator (Li, 2000)
which adaptively adjust the inertia weight, speed up its
search capabilities. Thus forming a cloud adaptive
variation particle swarm optimization and multi-objective
of the power system reactive power optimization problem
solving (L1 et al., 2009).

MULTI-OBJECTIVE OPTIMIZATION
MODEL OF REACTIVE POWER

Objective functions: With the rapid development of the
power system, reactive power optimization techniques
also proposed higher requirements, this study mainly
consider three sub-goals. Namely the minimum active
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power loss, voltage deviation AU Min and static
voltage stability margin AV Maximumn reactive power
optimization model as a multi-objective function. Detailed
multi-objective optimization model of reactive power as
follows:
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in which: G, is between nodes i and j, k branch
conductance; Ng 1s a participation m active power loss
calculation of the number of branches of the system; T, is
the transformer ratio k; 6, is a voltage phase angle
difference; AU, 1s the maximum permitted voltage
deviation; N, is the total number of load nodes.

Power flow constraints
Equality constraints:

P, -P, - U‘Z U,(G,cos8, +B,sin6,)=0
@
Qu +Q, -0y U, > UG, sing, — B, cosB) =0
FEN;

Inequality constraints:

U;“‘“ U, gUg“,ie N,
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where, Gy, B,. 0, respectively, between node 1 and J, the
conductance, the susceptance and the phase angle
difference; U, T,, Q; are the generator terminal voltage
node, adjustable transformer tap and reactive power
compensation node capacity; a, b, respectively, for the
load node voltage and reactive power of the generator
nodes, UT®, US®, T, T, QF°, Q5. UpR, Un, @3, Q% ,
respectively, the corresponding variable upper and lower
limits.

Reactive power optimization of multi-objective fuzzy
solution: In this study, the above mentioned three
sub-objective optimization of reactive power into the
[0, 1] interval values of the membership function. For
the Eq. 1 multi-objective mathematical model listed, have
three sub-objective function corresponding membership
functions are 11,(x), 1,(X), L(x):

11 PL) = (P = P )/ Pl = Plossmin)
1y {AU) = (AU, —AUY/(AU,., — AU ) (4
P (AVI=(AV,  —AVI(AV  —AV )

According to cross-fuzzy decision, the original
problem can be transformed into a single objective form,
you can according to Eq. 5 for solving multi-objective
reactive power optimization to get the optimal solution x*:,
Where, 11, (x,, X,) is the optimal membership degree.

xoe MR, (%, X,)) = max fmin, ()1 (AU s (AVD)) - (5)

IMPROVED PSO

PSO algorithm: P30 algorithm of the foraging birds from
research. Each particle in the PSO algorithm can be
regarded as one of the solution in space. if the particle
swarm s1ze 18 M, the position of particle 1 can be expressed
as a vector X; = (X, Xz ..., X ..., X, 1ts speed can be
expressed as a vector v, = (v, Vi, ..., Vi), its individual
optimum value is p, = (P, Pias ---» Pia)s its global best value
18P, = (Py. Pg ---» P particle 1 will update it is own pace
and position according to the following equation:

v, (t+ D=0, (D+cnip ()—x )+ (6)
&L (P (- X (X, (t+ =% (1) + v, (t+1)

where, d 18 the dimension of solution space, namely, the
number of variables: tis the evolutionary algebra, M is the
population size. M is the inertia weight, 1, and r, are
Random Numbers distributed in [0, 1], ¢, and ¢, are
constant, usually called learning factor. When the
particles continuously adjust their position, they set the
maximum speed as v, when V; exceed the V., V;1s equal
oV, .

Cloud theory: The concept of cloud is an uncertainty
transition model which translates one qualitative concept
denoted by linguistic value mto a quantitative one.
Definition 1:Sets U as a quantitative discourse domain
presented by determinate numerical values and sets A as
a qualitative concept in the domain 1. If a quantitative
value x belongs to 1J and x is a stochastic realization of the
concept A then an assured degree p, (3)e[0, 1] of x to A
is a random number which has a determinate tendency:

py ()Y U—=[01L¥xeUx >p (x) (7

Then, the distribution of x in domain U is defined as
a cloud. Each x is called as one cloud drop.The cloud
model is described by three number characteristics:
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Expected value Ex, entropy En and hyper entropy He.
As the distribution of p, (X) is the normal distribution, the
cloud model is called as the normal cloud model.

Based on cloud model adaptive parti-cle swarm
adjustment strategy: Set:

1 N
f ==-5f
w2t

15 the average fitness value of PSO, Press the fitness
value will be divided mto three subgroups of the
population that is close to the optimal particle populations
closer to the optimal particle populations and away from
the optimal particle, Where f, 13 the particle X in the k-th
iteration fitness value; Fitness value than the fitness
value of f averaged to cobtain £ Adaptation inferior
averaging the values of f_  to obtain f'  Each
sub-populations using different inertia weight w©
generation strategy, @ specific generation rules are as
follows:

¢ fsuperiorf'_,
Fitness value of particles smaller than £ Such
particles are already quite close to the global optimum

particle so just to accelerate its global convergence speed,
Let w value of 0.4.

¢ f superior {7, and inferior £,

Such particles are normal cloud generator using
nonlinear dynamic adjustment of particle X inertia weight
because such particles are particles in the ordinary
population. Adaptive particle swarm algorithm to generate
a new inertia weight as follows:

E, =1,
E, =~ fu)/a
H,=E,/c, (8)

E! =nommdE_.H,)
—(hE, )
=09-05%¢ 2’

Wherein, ¢,, ¢, for the control parameters, as:

~(5E,Y
Y]
0<e *B0° o

s0 we[0.4, 0.9], Thus w will be with the fitness value of
particles 13 reduced thereby reducing the dynamic
implementation of fitness smaller particles get smaller w
values.

+  f inferior {7,

Meet the above criteria particles are particles of poor
population that is far from the global optimum position, w
taking 0.9.

Adjust strategies of cloud mutation p-article swarm
optimization algorithm: For particles in the presence of
the late evolution of slow convergence and easy to fall
into local minima and other issues, it’s take on the part of
the particle mutation operation. Cloud variation particle
swarm optimization algorithm is based on each individual
particle and the global extremum through normal cloud
generator extreme expectations, entropy and hyper
entropy to complete particle variation.

Through a one-dimensional normal cloud operators
need to generate mutation particle swarm. according to
the three parameters of the cloud model to the next
generation population.

Solution of Reactive Power Optimization based on
CAVPSO: Combined with the above, this study give the
cloud adaptive vamation particle swarm algorithm to
solving multi-objective process. The main steps of
solving the multi-objective optimization of Reactive Power
Optimization are as follows:

¢ Initialization required parameters of algorithm, input
trend data, set the control variable binding coverage,
population size, maximum number of iterations, etc.

¢+  Determine the sub-goals and constraints
membership, to transformed mult-objective
optimization model into a single objective
optimization model according to blur selution in 1.3

¢  Flow calculation, get the current fitness value of each
particle, determine the optimum value of the
individual and the global, Determine whether the
variance reach the threshold value N, If reach the
threshold, then take mutation through the mutation
strategy on the particle swarm, otherwise, go to
Step 4)

s  Each particle evolution operator based evolutionary
strategy, Determine the speed and position of the
new generation of X; and Global optimum position of
each particle and the individual optimal value and
fitness value

*  Determine whether the termination condition is
satisfied, go to step 3) if not satistied, otherwise, end
of the iteration and output optimal solution

NUMERICAL EXAMPLES

This study selection IEEE 30-bus system as a test
system simulation example, Matlab 7.0 preparation
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Table 1: Average optimization results

TEEE30 node system Active power loss/pu Oftiet voltage/pu Static voltage stability margin index Lower loss rate (%)
Initial state 0.0551 0.0318 0.1295 -

PSO 0.0516 0.0172 0.1375 6.35
CAPSO 0.0496 0.0165 0.1479 9.98
CAVPSO 0.0490 0.0128 0.1652 11.07

Table 2: Average optimization results adding TA

IEEE30 Node System Active Power Loss /pu Offset Voltage /pu Static voltage stability margin index Lower loss rate /%
Initial state 0.0551 0.0318 0.1295 -

IA 0.0518 0.0191 0.1546 5.98

P8O 0.0516 0.0172 0.1375 .35
CAVPSO 0.0490 0.0122 0.1792 11.07
Table 3: Values of conrol variable Experiment 2: Under the same basic conditions, then
Variables No. Pso 1A CAPSO CAVPSO optimization of the results of Experiment 1 with the
V1 1 1.0591 1.0501 1.0730 1.0768 I Al . A £ . . the
v, 2 1.0334 1.0315 1.0673 1.0681 mmune Algorithm (IA) for comparative experiment, the
Vs 5 1.0207 1.0160 L0742 1.0352 optimization algorithm of the average optimal results as
Ve 8 1.0341 1.0193 1.0821 1.0451 Table 2.

Vi 11 1.0944 1.0352 1.0714 1.0622 :

Vi 13 1.0626 1.0331 1.0672 10710 _Tabk 2 Show?’ _the_ Immune Algorithm (IA) for
T, 60 0.9000 0.0651 0.0011 L0100 multi-objective optimization results compared with the
T 6-10 0.9250 0.9750 L1102 0.9900 average standard particle swarm optimization results,
T 4-12 0.9250 0.9500 0.9490 1.0000 Among them, the active power loss and voltage offset
T, 2827 0.9038 0.9146 0.9146 0.9600 . . . .

Qi 10 0.2000 0.2400 01084 0.2000 inferior PSSO algorithm, however, the static voltage
Qs 24 0.2000 0.1200 0.0657 0.1200 stability margin index is superior to PSO and CAVPSO

CAVPSO applied using multi-objective reactive power
optimization procedures and flow calculation procedures,
the trend calculated using the Newton - Raphson method.

Experimental data are standard values, where the
reference power is 100 MVA, regulating transformer
ratio set in steps of 0.025, Adjust the ratio between
0.90~1.10 p.u. maximum and minimum mumber of stalls 48,
Compensation capacitor QC adjustable m steps of 0.04,
Compensation to a maximum of 0.5 pu, initial voltage and
transformer turns ratio of 1.0. Particle swarm size n = 40,
Learning factor ¢l = ¢2 = 2, wmin = 0.4, wmax = 0.9,
maximum number of iterations Maxiter = 100, variance

threshold N = 0.2.

Experiment 1: Under the same conditions, mdependently
of the algorithms run 50 times, The Particle Swarm
Optimization (PSQ), cloud APSO (CAPSQ) and the
proposed cloud adaptive varnation particle swarm
optimization (CAVPSO0) three algorithms to optimize the
average optimal results were compared, comparing the
results shown in Table 1.

Table 1 shows that the proposed algorithm CAVPSO
1s applied to multi-objective reactive power optimization
calculation, Active power loss by the 5.51 MW down
4.90 MW, a decline of 11.07 percent, The result 1s better
than the other two algorithms. Tn addition, the other two
sub-objective
advantages.

function values also have obvious

algorithms are superior to each sub-goal above two
algorithms to verify the proposed algorithm 1s effective
and feasible.

Table 3 gives the TEEE 30 node system after
optimization of the four algorithms optimal value of the
control variable.

Table 3 shows, CAVPSO algorithm optimized for all
node voltages, the control variable from its upper and
lower limit values ??have a certain distance, solves the
reactive power output close to the limit, you can solve
reactive power optimization objective function and the
conflict between system voltage safety problem.
According to the above comparison shows that the
proposed method for multi-objective optimization of
reactive power optimization can get high-quality solution.

CONCLUSION

We propose a new method to improve the particle
swarm algorithm using cloud model. The improved
algorithm 1s applied to IEEE30 bus system to solve the
multi-objective reactive power optimization operation, The
results show that the proposed algorithm effectively solve
the PSO precocious problem.
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