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Abstract: How to effectively evaluate price of volatility risk 1s the basis of risk management in electricity market.
An ARMAX-GARCH model imposing a skewedt-t distribution with time-varying skewness and degree of
freedom over the error terms (ARMAX-GARCH-ST) is proposed and used to filter electricity price series in
order to capture the dependencies, seasonalities, heteroscedasticities, skewnesses, leptokurtosises,
volatility-clustering and relationship to system loads. In tlhus way, an approximately independently and
identically distributed residual series with better statistical properties is acquired. Then Extreme Value Theory
(EVT) is adopted to explicitly model the tails of the normalized residuals of ARMAX-GARCH-ST model and
accurate estimates of electricity market Value-at-Risk (VaR) can be produced. The empirical analysis shows that
the ARMAX-GARCH-EVT models can be rapidly reflect the most recent and relevant changes of spot electricity
prices and can produce accurate forecasts of VaR at all confidence levels, showing better dynamic
characteristics. These results present several potential implications for electricity markets risk quantifications
and hedging strategies.

Key words: Value-at-risk, extreme value theory, skewed student-t distribution, probability distribution

assumption, ARMAX-GARCH model

INTRODUCTION

The mtroduction of competiive mechanism has
provided more lucrative opportumities for electricity
market participants but also brought the price of volatility
risk hitherto unknown at the same time. If price of
volatility risk in electricity market cannot be effectively
identified and managed, it is possible to cause disastrous
consequences for electricity market participants
(Bushnell, 2004).

With Value-at-risk (VaR) as the risk measure, the
purchasing risk of electric utility 1s calculated using a
normal distribution based Delta model (Zhang and Zhou,
2004.). Via capacity sufficient and mustrun rate as
exogenous variables to depict supply-demand conditions
and generators’ market power, a GARCH model with
normal distribution mnovations (N-GARCH) has been
used to assess the price of volatility risk in electricity
markets (Huang et al., 2009). Considering that N-GARCH
models camot effectively address the leptokurtosis and
heavy-tailed phenomenon in the data of profit and loss, a
resampling method based on bias-correction and
bootstrap has been developed, further improving the
VaR forecasting accuracy of the N-GARCH models
(Hartz et al., 2006). Via GARCH-based model, the mmpacts
of probability distribution assumption for immovations on
VaR estimation accuracy are analyzed for three
distributions: Normal, student-t and General Error

Distribution (GED), showing that the GED performs better
in predicting VaR but the mutil-seasonalities, higher
moments and relationship with loads cannot be effectively
addressed (Wang et al., 2012).

The above-mentioned models of estimating VaRs are
all based on the probability distribution assumption for
the whole sample. The accuracy and stability of estimated
values are heavily dependent on the selection of
probability distribution for innovations (I.i and Sun, 2010).
Extreme Value Theory (EVT) provides a firm theoretical
foundation to study the asymptotical distribution of
extreme value for order statistics, without assuming the
probability distribution for the sample data. Bystrom
(2005) extended the classic unconditional EVT approach
by first filtering the data via GARCH specification to
capture some of the dependencies in electricity return
series and thereafter applying ordinary EVT techmques.
In this way the Independently and Identically Distributed
(IID) assumption behind the EVT-based tail-quantile
estimator 1s less likely to be violated and the better tail
estimates in-sample and better predictions of future
extreme price changes can be acquired. To describe the
leverage effects of volatility of electric power price, an
EGARCH specificaion (Chan and Gray, 2006;
Gong et al., 2009) 15 used to filter the return series to
obtain nearly IID residuals, showing that EGARCH-EVT
model can reflect the most recent changes of electricity
prices and produce accurate forecasts of VaR in the more
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volatile markets where the distribution of returns is
characterized by higher levels of skewness and excess
kurtosis.

With careful consideration of the basic features of
electricity prices, a time series analysis and EVT based
two-stage model to estimate VaR (ARMAX-GARCH-EVT)
is proposed In the first stage, a GARCH model with
eX0genous variables and skewed-t mnovations
(ARMAX-GARCH-ST) 1s used to pre-filter the raw data to
capture the dependences of electricity price series. In this
way, an approximately TID residual series with better
statistical properties is acquired. In the second stage, EVT
is adopted to explicitly model the tails of the normalized
residuals of ARMAX-GARCH-ST model and accurate
estimates of VaR in electricity market can be produced.
There are several contributions. First, the study proposes
a model that has the potential to generate more accurate
quantile estimates for electricity market. The seasonalities,
heteroscedasticities,  skewnesses, kurtosises  and
relationship to system loads of electricity prices are
accommodated via an ARMAX-GARCH-ST specification.
In forecasting VaR, EVT 1s applied to the standardized
residuals  from this model. Clearly, the proposed
ARMAX-GARCH-EVT combination is a sophisticated
approach to forecasting VaR. The second contribution is
to acquire an approximately IID residual series with better
statistical properties by using a conditional skewed-t
distribution over the emror terms which can more
accwrately depict the leptokurtosis and heavy-tail of
electricity price series. The effectiveness of the VaR
estimates via peaks over thresholds model (POT) can be
further improved. The third contribution of this study 1s
to compare the accuracy of VaR forecasts under the
proposed model with a number of conventional
approaches  (respectively ARMAX-GARCH  with
Gaussian, studemt-t, skewed studentt and GED
distribution). Tail quantiles are estimated under each
competing model and the frequency with which realized
returns violate these estimates provides an nitial measure
of model success. The empirical analysis based on the
Pennsylvania-New Jersey-Maryland (PTM) historical data
indicates that the ARMAX-GARCH-ST model can
produce accurate forecasts of VaR at all confidence levels
but the ARMAX-GARCH-EVT model can be more rapidly
reflect the most recent and relevant changes of electricity
prices and performs more strongly, showing better
dynamic characteristics. These results suggest that the
proposed approach is robust and therefore useful.

VAR ESTIMATION MODEL
Risk measures: Value-at-risk 1s one of the most intuitive

and comprehensible risk measures. Assuming normal
market conditions and no trading in a given portfolio, VaR

is defined as a threshold value such that the probability
that the worst loss on the portfolio over a target horizon
exceeds this value 15 the given level of probability.
Mathematically, the VaR of the portfolio with a confidence
interval ¢, VaR,, is defined as (Huang, R.H., et al., 2009):

VaR, =inf {x € R| Prob(AP = x) <1 —c} (1)

where, Prob (*) denotes the portfolio probability
distribution and A P the portfolio losses over the given
holding period.

For a given time horizon t, suppose that the system
demand for electricity is Q, the retail price to ultimate
customers 1s P, the spot price 1s p, = E (pJI,.,+€, where E
(¢) is the conditional expectation operator, I, the
information set available at time t-1 and & the random
shock such that E (e) = 0 and E (gg,) = 0,¥,#s. Given that
h, denotes the conditional standard deviation and z
denotes a white nose process with zero mean and
constant variance equal to 1, &, can be defined as hyz. The
trading losses of an electric utility over the target horizon
tis:

AP, =Q,(E(p, |1, )+h,z,~P,) (2)

Because P; is a regulated price approved by the
regulators and Q, can be accurately forecasted
(usually error 1s below 3%), Q, and P, can be regarded as
constant, let F(x[l,,) denote the cumulative distribution
function of z conditional on the information set I
available at time t-1. The VaR of an electric utility in the
specified period t with the pre-assigned probability level
¢, denoted by VaR_,, is:

1-c=Prob{(AP, > VaR )
VaR, - QuE(P: |1 1) - Po)|I (3)
t-1 |
Qthy |

=1-F,

Now inverting Hq. 3 for the given probability ¢, we
obtain:

VaR,, = Q, (B, I1,,) - B + hF (e |1,,), (4

where, F;! is the quantile function defined as the inverse
of the distribution function F,. Therefore, calculating VaR
does require some knowledge of the underlying asset
distribution.

ARMAX-GARCH-ST model: Tn order to effectively
pre-filter the electricity price series, we choose a combined
ARMAX and GARCH model due to the strong
seasonality, heteroscedasticity, skewness, kurtosis
pattern and the signmificant volatility clustering in the
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electricity market. The seasonality in the spot market is
particularly obvious over the day and over the week. We
therefore meclude a general formulation for sinusoidal
function m the model to capture the possibility of having
many cycles per year. Assuming that p, d, € and z
denote the electricity spot price, the system load, the
random shock and the normalized mnovation at time t, h,
denotes the conditional standard deviation of &, then the
ARMAX-GARCH model depicting the changing rule of
electricity spot price at time t can be formulated as
follows:

p, =E(p, [T 4)+E
Eip, | T,) =t +oud,,, + 1)} + G(B)p,

e+ sin )

Yy = Yo + B+ P -y B

W) =P+ R+ QP+ f )
K = 1P+ + i+

g, =hz,z |1 ~D(0,1)

LY -
2 2 2
ht = BU +z thH +z E'ZxEH
=l =

By = 0.0y, By 2 0,¥ig[L ], je [Ls,]

where, B 1s the backshift operator, d,y 1s a dummy
variable that takes a value of 1 if the observation is in
weekday and zero otherwise;, u, v and q, respectively
denote the lagged orders of d7 p, and ¢ in the mean
equation; 1, and s, denote the lagged orders of h,” and ¢,
in the conditional variance equation; m is the number of
changing cycles of electricity price series per vyear, the
amplitude and location of the peak can be respectively
captured by:

o = (g )
And:
@3 = (g1, Aorm)
a= (g, @, a,az)
B= BoBro.-Brg Bor s, )
Y= YD) @ = (@, ..,p), k=, ... k)and
6 =(0,, ..., B,) are the parameters to be estimated.

Before parameters calibration, assumption on the
distribution of random errors needs to be made. In order
to effectively capture the skewness and kurtosis of
electricity price series, we assume that the Probability
Density  Function (PDF) for the standardized
innovations  z, is consistent with a skewed student-t

distribution with time-varying skewness and degree
of freedom. The PDF of z can be expressed as:

Nt

EAN]
ey
't i §

L 1+hx=-a/b,
T - hx <—ab,

(6)
+1
S N
N - 2060
a, =4Ac, n'_z,bf =1+347 —a’
-1
where, ' (¢) 18 a Gamma function, A, and 1, are the

conditional  skewness and degree of freedom
corresponding to the skewed student-t distribution of z,
respectively. If we denote the upper and lower Lhimits of 1,
by U, and L, the upper and lower limits of A, by U, and L,
then A, and ¢, can be calculated by:

-L,

=L +—a 1

L R T
5 B w

@ =3y + Z due + zazngﬂ + zaaxmm
) i =)

U, -L
=L, + et St S
1+ exp(-p,)

7

a B v,
gl
K =T+ Z‘tliai—i + Z‘tﬁat—i + Z'ta)l-’-m
=) =) =

where, 1. s_and v_are the lagged orders of &, /-1 and o,
1in equation of conditional degree of freedom, r,, s, and v,
are the lagged orders of &, £7-i, and i,in the conditional

skewness Eq.:
d=idpdyrndy dy,ndy o dyends )
And:

t :(tﬂ’tlh'“’th,,’t21’”"t2s.,’t31""’t3vi)

Are the parameters to be estunated.

There are cwrently numerous techniques for
estimating the parameters of ARMAX-GARCH model
and no standard is set on how it should be done.
Gebizlioglu ef al. (2011) have shown that the Maximum
Likelihood Estimator (MLE) performs better for large
samples. Along this line, we estimate the parameters
of the proposed models by maximizing conditional
log-likelihood function under different probability
distribution. Let § = (&, v, @, k, B, 8, ), the log-likelihood
function for all observations corresponding to €, 1s given

by:

6186



Inform. Technol. J., 12 (21): 6184-6190, 2013

LO-FLO-T [ln {t’h—“]

2
711(+11ﬂ - 1 bz, +a,
2 m-2)1 1£x,

where, T is the sample volume, 1, is the log-likelihood
function for the t-th observation. By maximizing L. (J), {,
the estimated values of parameters { can be obtained. It 1s
important to note that the log-likelihood function L () is
highly nonlinear. The starting values of parameters { must
be selected with care.

(8)

ARMAX-GARCH-EVT model: There exists strong
temporal dependence in the sequence of electricity prices
due to the specific characteristics of electric power. Tt
violates the underlying assumption that the data
sequence to which EVT models are applied should be a
sequence of TID random variables. In this study, a
two-stage approach, provided by McNeil and Frey (2000),
15 used to this problem. Firstly, the heteroscedasticities,
skewnesses, lepkurtosises and  seasonalities of
electricity price series are filtered by the proposed
ARMAX-GARCH-ST model to obtain a nearly TID
normalized residual series. In stage two, the EVT
framework 1s applied to the standardized residuals to
better capture the heavy-tails and improve the accuracy
of VaR estimation.

For POT method uses data more efficiently, it has
become the commonly used method m recent applications
(Gilli and Kellezi, 2006). POT method is to model the
excess distribution for the ID sample data that exceed a
high threshold. Given the distribution function F, (z) of a
random variable 7, the distribution function of values
of z above a certam threshold u, F, (y), 15 called
the conditional

excess distribution function and is

defined as:
F(y)=ProbZ -u=y|Z>u)v0<y=z,-u (9)

where, 7 is a random variable, u is a given threshold,
v = z-u are the excesses and Z:<00 1s the right endpoint of
F, (2). We venify F, (y) that can be wntten in terms of F, (z),
Le.:

E@+y)-E@W _E@-E@ (10)
1-F, () 1-Fw)

E(y)=

The theorem of Balkema-De Haan-Pickands states
that for sufficiently large u, the conditional excess
distribution function F, (y) is well approximated by the
Generalized Pareto Distribution (GFD) G, (y) which is
defined as:

% -1
Gy (5) - 1"[“?’} 70 (1)
1-¢7" £=0

fory e (0, z-w) if > = Oand y € [0,-0/E] if £<0. £ is the
shape parameter or tail index and ¢>0 1s the scaling
parameter. In general, we cannot fix an upper bound for
financial losses, so only distributions with shape
parameter £>0 are suited to model fat-tailed distributions.
If T is the total number of observations and T, the number
of observations above the threshold u, the value of F,(u)
can be well approximated by the estimate (T-T, /T for
sufficiently high threshold u. Replacing F, (y) by the GPD
for £=0 and F, u) by (T-T,)/T, we obtain the estimate of F,
(z) from Eq. 11

o
%z(z)zl—L[IJri(z—u)J FES0 (12)
T [s3

For z=u. A reasonable threshold u must be chosen to
effectively estimate the values of parameters £ and . So
far, algorithm with satisfactory
performance f or the choice of the threshold u 1s
available. A graphical tool for visually selecting the
threshold u is the sample mean excess plot defined by the

no automatic

points (ue (u)). Let z,>z,>... >z represent the IID
order random variables, e (u) can be estimated by
(Coles, 2001):

e“(u):i(zm—u)/(n—lnl), (13)

where, k = mm {iz;>u}, n-k+l is the number of
observations exceeding the threshold u. Because the
mean excess function will be linear with respect to the
threshold u. Hence a plot of the sample mean excess
function against threshold u should be approximately
linear in u if the GPD provides a good description of the
data. So we can select the value that locates at the
beginning of the sample mean excess plot which is
roughly linear as the suitable threshold.

Having determined a threshold, the estimates of the
shape parameter £ and scale parameter o of the GPD, £ and
0, can be obtained by applying maximum likelihood
estimation for the excesses of a threshold u. Replacing the
values of parameters by their estimates and mverting
Eq. 12 for a given probability ¢, the estimates of the c-th
tail quantile for the sample distribution can be gotte:

f?:(c):u+%((Tc/']; )_’; —1) (14)
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which is valid for positive excesses, that is z>u.
Substituting the estimates of the c-th quantile
(by POT model), the conditional mean and standard
deviation (by ARMAX-GARCH-ST model) into Eq. 4, the
VaR of electric utility in a specified periodt with a
pre-assigned probability level ¢ can be obtained:

VaR., =Q, (Et —B,+hF (c)). (15)

Backtesting for VaR estimates: It 15 of crucial importance
to assess the accuracy of VaR estimates, as they are only
useful insofar as they accurately characterize risk.
Backtesting or verification testing is the way that we
verify whether forecasted losses are in line with actual
losses. The most widely known backtesting method based
on failure rates has been suggested by Kupiec, (1995).
Kupiec’s test measures whether the number of violation
exceptions (losses larger than estimated VaR) is in line
with the expected number for the chosen confidence
interval. Under the null hypothesis that the VaR estimated
model 18 correct at a pre-assigned confidence mterval, the
observed failure rate should act as an unbiased measure
of the level of significance as sample size is increased.
Denoting the number of times that the actual portfolio
returns fall outside the VaR estimate as N and the total
number of observations as T, the following Likelihood
Ratio (LR):

R Wi
3

is asymptotically X* (chi-squared) distributed with
one degree of freedom. If the value of LR exceeds the
critical value of the X* distribution, the null hypothesis
will be rejected and the model i1s deemed as inaccurate. On
the contrary, the null hypothesis will be accepted and the
model should be considered correct.

LR =-2log (16)

EMPIEICAL RESULTS

Data description: The PIM is orgamzed as a day-ahead
market. Participants submit their buying and selling bid
curves for each of the next 24 h. Then the market operator
agpregates bids for each how and determines market
clearing prices and volumes for each h of the following
day. In this study, a total of 1197 observations of average
daily electricity spot prices in $/MWh and average daily
loads in Gw are employed to validate the performance of
the VaR calculating model. The sample period begins on
1st June 2007 and ends on 9th September 2010. Without
loss of generality, in this study we assume that an electric
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Fig. 1: Mean excess function plots of mnovations

Table 1: Estimation of GPD parameters and quantiles

Threshold  Shape Scale Confidence Tail quantile
1.30 0.174 0.6418 95. %% 1.6767
99.0%% 2.9955

utility has the obligation to serve 1MW of load 24 h a day
and the retail price has been frozen at a level equivalent to
03/MWh.

Estimates of ARMAX-GARCH-EVT: Although the
standardized residual series 1s much closer to being IID
than the original series, the Q-statistics of Ljung-Box tests
indicate remaining autocorrelation, suggesting that {z} is
a weak dependent stationary series. Therefore EVT can be
implemented on the standardized series (Coles, 2001).

Figure 1 shows the sample mean excess function for
the standardized errors of ARMAX-GARCH-ST model.
We find that the sample mean excess plot is roughly linear
when the value of the threshold u is about 1.3. In this
case, the number of resulting excesses are 107, accounting
for 7.94% of the whole sample which is consistent with
the suggestion by McNeil and Frey (2000).

When the residuals above the selected threshold u
are determined, the estimates of the shape and scale
parameters can be determined by fitting the GPD to the
standardized residuals via MLE and the tail quantiles at a
given confidence level ¢ can be calculated by Eq. 14.
Table 1 reports the estimated results for tail index, scale
parameter and tail quantiles. Tt can be seen that the £
estimates is positive and statistically significant,
indicating that the right tail of the standardized residuals
1s characterized by the Fréchet distribution

VaR estimates and backtesting: Substituting the
calculated results mto Eq. 15, the VaR at each confidence
level can be estimated. Fig. 2 shows the estimated results
of the dynamic VaR during the high volatile period at the
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Fig. 2: Dynamic VaR for electric power company at 99%
confidence level

Table 2: Backtests of estimated VaRs

Exception  Normal Student-t Skewed-t GPD
95% Expected 60 60 60 60
Real 03 43 54 60
LR 0.172 5.513" 0.621 0.000
97.5% Expected 30 30 30 30
Real 42 20 29 30
LR 4.449™ 3.816" 0.030 0.000
9904 Expected 12 12 12 12
Real 22 12 9 13
LR 6,805 0.001 0.814 0.087

Nate:*, **and***, respectively indicate statistical significance of estimated
parameters at 90, 95 and 99% confidence intervals

99% confidence level (from 2008-5-15 to 2008-8-23). Tt can
be seen from Fig. 2 that the ARMAX-GARCH-EVT
models can be rapidly reflect the most recent and relevant
changes of spot electricity prices and can produce
accurate forecasts of VaR at all confidence levels,
showing better dynamic characteristics.

The Kupiec’s test results for actual and forecasted
losses are shown in Table 2. It can be seen from Table 2
that the model with normal innovations underestimates
the volatility of price risk above 95% confidence level and
that the one with student-t innovations overestimates the
volatility of price risk below 99% confidence level whereas
the null hypothesis cannot be rejected for the models with
skewed student-t and GPD distributions m each
signmficance level. Summarizing the results for the
Kupiec’s tests, our method is able to improve the VaR
forecasts so much that VaR predictions are obtained
which are nsignificantly different from the proposed

downfall probability.

CONCLUSION

The distinctive characteristics of electric energy make
electricity price present highly volatility and extreme

movements of magnitudes rarely seen in markets for
regular financial assets, thus volatility of price nsk
management in electricity market are more inportant than
in financial markets. In this study, a two-stage model
for estimating VaR 1s proposed. In stage one, an
ARMAX-GARCH-ST model with load as an exogenous
explanatory variable 1s used to pre-filter the electricity
price series in order to acquire the approximately TID
standardized residuals. In stage two, an EVT model is
employed to explicitly deal with the right tail of the
standardized errors of the ARMAX-GARCH-ST model
and accurate estimates of VaR in electricity market can be
produced. The empirical analysis indicates that the
ARMAX-GARCH-EVT models can be rapidly reflect the
most recent and relevant changes of spot electricity prices
and can produce accurate forecasts of VaR at all
confidence levels, showing better dynamic characteristics.
These results present several potential implications for
electricity market nisk quantifications and hedging
strategies.
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