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Abstract: The Characterizations of the solution set in extremely problem under mclusion constrains:(P):

minf{x)
5.3 C,0eF(x).

15 considered in this study. When f is continuously convex and F 15 a set-valued map with convex graph, the
Lagrange function of (P) is proved to be a constant on the solution set and this property is then used to derive
various simple Lagrange multiplier-based characterizations of the solution set of (P).
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INTRODUCTION

The characterization of optimal solution of a
mathematical programming 1s an important study in
optimization problems and it is fundamental for the
development of solution methods.

Jeyakumar (Jeyakumar et af., 2004) presented
characterization of the solution sets of the followmg
cone-constrained convex programming:

®)

minf{x)
s tuel-g(x)eK,

where, X and Y are Bnanach Spaces, C 1s a closed convex
subset of {, K is aclosed convex cone in Y, £ X—R s a
continuous convex function and g: X—Y 1s a continuous
Knapping. The Lagrange multiplier, which 1s to identifying
optimal solution for constrained optimization, is used to
characterize the solution set of (P7). First, the author
established that the Lagrange function of (P") 1s constant
on the solution set of (P). Then, he used tlus elementary
property  to  present various simple TLagrange
multiplier-based characterizations of the solutions set of
(P"). (Clarke, 1998). In tlis study, we consider the
programming problem under inclusion constrains:

(P)

minf{x)
s txel, 0F(x)

Suppose that C is closed convex subset of X.fis a
contimious convex function and g is a set-valued

mapping with convex graph. Obviously, constrain —g
(x)eK can be written Ocg (x)HK. Tt is also easy to derive
that g (x) +K 1s a map with convex graph on C, that 1s to
say, the problem (P") is a special case of problem (P)
where F (x) = g (x)+K (Remark 2.1). We prove that the
Lagrange function of problem (P) is constant on is
solution set (Theorem 3.2). And we derive various
characterizations of the solution set using the Lagrange
multiplier (Theorem 3.3, Proposition 3.1, Proposition 3.2
and Proposition 3.3).

PRELIMINARES

Let X and Y to be banach spaces and X* and Y* are
their dual spaces. Let C to be a nonempty closed subset
of X. Suppose that £ X—R 1s a real-valued function and
that g: X—Y is a set-valued mapping.

Definition 2.1: A function f 15 said to be satisfy a
Lipschitz condition of rank K on a given set C provided
that F is finite on C and satisfies:

‘f(x)ff(y)| sL”x - y”,‘v’x,y eC.

A function f 15 said to be Lipschitz near if it satisfies
the Lipschitz condition on a neighborhood of x. A
function f is said to be Locally Lipschitz on C if f is
Lipschitz mere x for every xcC.

Definition 2.2: Let  be Lipschitz of rank K near a given
point xeC. The generalized directional derivative of fat x
in the direction v, denoted f* (x; v), is defined as follows:
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£ () = limsgp L& T = 1G)
sz, 140 t

where, of course v is a vector in X and t is a positive
scalar.

Definition 2.3: The generalized gradient of f at x, denoted
odf (x) 1s defined to be the subset of X*:

)= e X vy z=x",v=, vve X}
Proposition 2.1: Let f be convex on C and Lipschitz near
xcC. Then the directional derivatives f’ (x; v exist and we
have ' (x; v) = £ (x; v).A vector x €3 (x) iff:

fly)-flx)z<x"y—xrvyeC

Definition 2.4: The tangent cone to C at x, denoted T® (x),
1s the set of all those veX satisfying:

d.{xv)=10
where, d.° (x, v) is the distant function of C, given by:

d.{x)= 'Lnf{”x - c”:c eC}

Definition 2.5: The normmal cone to C at x, denoted N (x),
1s defined the polarity of its tangent cone:

N AX)=(T (X)) ={x" e X" < x",v>20,vveT.(x)}

Proposition 2.2: Let C be convex. Then T (x) =cl {A{c-x):
A=0, ceC}
And:

Ne(x) = {x"eX" <x", y-x=<0, vycC}

Definition 2.6: The graph of a set-valued map F to C is
said to be convex if for any x,, x; €C and pe (0, 1), we
have:

Flux, +(1—pwx, ) 2 pFx )+ (- 1)F(x,)

Now consider the programming problem under
inclusion constrains:

(P) minf(x)

5. xeC,0eF(x),

where, C 18 a closed convex subset of 3: {2 X—=Y is a
continuous convex function and g: X—Y is a set-valued
mapping with convex graph.

Remark 2.1: Denote F (x) =g (xtK
Then, the problem (P) degenerate
cone-constrained convex programming (P'):

mto the

minf(x)
s txeC-g(x)ekK,

where, C 1s a closed convex subset of 3, K is a closed
convex cone in Y: £ X—R is a continuous convex function
and g: XY is a continuous K mapping, that is, for any x,,
x,6C and pe(0, 1), we have:

MG )+ (- g(x) — gl +(1-pix; yeK

In fact, -g (x)eK is Ocg (x)+K. Denote F (x) = g (x +K.
The only need to purify is that F (x) is a map with
convex graph. For any x,, x,6C, ue(0, 1) we have:

WF(x; )+ (1 - JUFx; )

- lel,) +K)+ (- i(elx,) +K)
= (e lx, )+ (- s(x,) + K
celux +1-px) +K+K

= —g{ux, +(1-jx,) + K

=F(x; +(1-p)x;)

Then, the conclusion follows.

Since, F 15 a map with convex graph, its image F (X)
is a convex set (Ekland, 2009). Suppose that the barrier
cone of F:

Yr={y' €Y :inf <y ,ys+ e}
=)

is closed and does not depend on x. This is the case, for
example, when F 18 locally Lipschitz (Amahroq and
Gadhi, 2003). For every y €Y, the support functions of F
15 defined as follows:

Cely )= inf ~y",y+

yeF()

For problem (P), let E and 3 are, respectively the
feasible set and the solution set, that 1s:

E={xeC:0eF)},
8={xeE:f(x) <f(¥), vy €E}

Remark 2.2: For problem (P°), that is, when F (x) = g
(x)+K, we have:

Cely ) ==y".8() -

In fact:
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C .ty x)= inf <y ,y»
o T %) Lf YLy

=inf <y ,g(x) +k =~
38

==y g(x) - +inf <y k-
If:
irg—q*,k =0
Then:

inf <y"k =—w
Y

Which 1s conflict with:

TeY L=y eY": inf <y yr-—w
¥ €Y =1 Lnf =yLy }

Sine 02K, we have:

fpf <y k=0

Then, Cu (7™, ) = <y, g(x)>.
Denote:

Ly )= f0H <y s(x) =

And let E and S be respectively the feasible set and
the solution set of problem (P7), that 1s:

E'={xeC:0eg(x)+K},
8'={xeE"1(x) =), vy E}.

Proposition 2.3: If F 1s a map with convex graph and then
Ce (v',.) is a convex function on C.

Prove: Since i1s a map with convex graph, we have:
Flux, + (1 - p)x,) 2 pFx )+ (- OF(x, ), vx,x € Cpe (0,1)
Then:

inf  <y'y»-
o i) 7oy

.
inf - -
SeECa Ry Y

= inf «<y,y=+ inf <y .,y
i I A TR

=p inf <y .,y +=+l-p) inf <y ,y»-
Hnf <y.y { u)y;g(xz) ¥y
That 1s:

Cel(y" i, + (- 0x,) UGy, x) + (L - WGy, %, ), ¥x,,x, £ C,uE(0,1)

So, Cr (¥',.) is a convex fimction on C.

Definition 2.7: Problem (P) is said to be regular at a
feasible point x if the system:

{Cp(y*,f)= 0 2.1)

80y HE)=0

Admits a unique solution y*=0.
Let:

ME)={Ae(¥r) 102 &L(7,X)+N_(X) + C (2, X)= 0}
clearly, the Lagrange multiplier set M (X) is nonempty if
the problem (P) is regular at x. Denote the Lagrange
multiplier set of (P*) (Jeyakumar et al., 2004) to be:
M'(X)={LeK*:0e 6L{%,X)+ N (X) < A,g(X) >=0}

CHARACTERIZATION OF SOLUTION SET

For problem (P), we have the following first order
optimality condition.

Theorem 3.1: Suppose that the problem (P) 1s regular at
x. Then, xeC if there exists a Ac(Y,"), such that:

Oe aL(AX) + N, (D), (3.1)
Cp(AX)=0.

Prove: The necessary condition is proved in (Dien, 1985).
We only prove the sufficiency.

It follows from (3.1) that there exists £eJL (A, x) such
that:

—£eN:(x)

From the definition of the convex sub differential and
normal cone, we have:

L{2x)-L{AX)2=<Ex-X,vxeX

And:
<= x-X==0,vxeC
Then:
L{2x)-L{Ax)=0vxeC
That is:

£(x)+ C, (Tx) 2 £(X) + C, (Fox), Ve € C (3.2)
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Since:
0eFix), vx cE
Tt follows that:
Co(hx)= inf <y »<0.9xcE (3.3
Cp(hx)=0 (3.4)
And take (3.3), (3.4) to (3.2), we obtain:
£(x) = (%) - C, (Rx) = £(X), "x e E (3.5)

And so xe8S.
Corollary 3.1 suppose that the problem (P) is regular
at X. Then, X8 if there exists a A2(Y,"), such that;

02 d'(AX)+ N (%),
< A,8(X) »=0.

Prove: By Remark 2.2, we have:

Cp(h,x)y==2,g(X) =,
LYK = (XM ~ Ag(X) >

Take it to Theorem 3.1 we can obtain the conclusion.

Remark 3.1: The proviso of Corollary 3.2,3.3,3.4,3.5,3.6

1s similar to Corollary 3.1, so we omit them in this study.
From the first optimality condition, we can obtain the

conclusion that the Lagrange function is constant on the

solution set S.

Theorem 3.2: For problem (P), let xeS, AeM(x). Then:

C(hx)=0,vx€e8S

That 1s, the Lagrange fumction L (A, x) is constant on

Prove: For any xe3cE, we have (3.5):
£(x) 2 £(X) - Cp(hx)

IfCp (A, 8)<0
Then: £ (x)>T(x),

Which is conflict with f (x)>f (X) so C; (A, x) = O and
AeM (%)

By the arbitrariness of X, the Lagrange function I. (A,
X) is constant on S.

Corollary 3.2: For problem (P’), let xeS', AeM' (X). Then
<A, g (x)-=0, ¥xeS'.

That is, the Lagrange function L' (Z, x) is constant on
57

We derive now characterizations of solution set
using the Lagrange multipliers as an application of the
preceding theorem.

Theorem 3.3: For problem (P}, let xS, AeM (x). Then:
8={xeE:Cp(h,x) = 0,3¢ € 3 (x) M OE (%), E(x — ¥) = 0}
Prove: Let:
8 = {x € E:C,(%,x)=0,3¢ € A (x)m BE(T), E{x — X) = 0}
Ifxe8, then f (x) = f (X).
By Theorem 3.2, we have Cy (A, x) = 0.

Since AeM (x), there exists £ f (x), {e3Cy (A, x)
such that:

(G+0) (x-x)=0 (3.6)
Now, [edC: (X, X), gives us that:
0=C,(hx)-C,(hX)z&x %)
Together with (3.6), this yields:
E(x-x)=0
On the other hand, since £e0f (x), we have:

Ex-%) =f(x)—F(%) =0

So, £ (x-x)=0
We now prove that £c6f (x). For any yoX, we have:

fy)-fix)
=f{y)-{{x)

2E(y -%)

=&y +Ex-%)
=&(y - x).

Thus, ££9f (x) Consequently, xS,
Conversely, if x=83,, the xcE and there exist £e0f (x),

then:

(%)~ £() = (X — %) =0,

Since, xS, f (x) = (x) = and so x8.
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Corollary 3.3: For problem (P*), let xS, AcM' (X). Then:

§'={x e E'=<,glx) =0,k A {x) m &f (X),E(x - X) = 0}
Since (3.1) of Theorem 3.1 can change into:

FLAE) N (NLE) = @
Cp(AX)=0.

We have:

Proposition 3.1: For problem (P), let xeS, 2eM (x). Then:

AL(,x) M (N (%)) = LG, 73 (N (7)), 7%,y £ 8.

That 1s, the function L (A;)N(-N(.)) 1s constant on S.

Prove: Let % %¢S. Suppose that £6X such that:

EeJL(X, ),
—Le N (X).

By Theorem 3.2, we have:
Ce(hB)= C (A, %)

And E(x X)=0.
Moreover:

Ex—k)=Ex-F)+EE &)= Ex —%)20,vxeC
Thus, £e-Ne (X).
And for all x2X:

£+ Cp (A x) — £ (%) - Cp (&)
=f(x)+ Cp(h,x) - F(%) - Cp(h.%)
= E(x - %)
=&(x—X) +E(X - %)
=&(x—X)

That 1s:

L{nx) —L{L%) 2 E(x — %), Vx e X

So, £c9L (A, %)
Then:

Ee dL(RA)N (-N, (X))

The conclusion follows since X, X is arbitrary.

Corollary 3.4: For problem, (P”), let xS, 2eM' (X). Then:

A Guxy (N x) =L y) M (N () Tx,y € 8

That 1s, the function:
'3 (CN (D)
Is constant on 3”
Proposition 3.2: For problem (P), let x €8, AeM (x). then:
S={xeE:C,(7x)=0,0L(hx) (=N, (x)) = AL{,T) A (<N, ()}
Prove: Let:
8, = {x e E:Cp(h,x) = 0,0L{Ax) A (N (x)) = AL{ALT) ~ (N (B}

From proposition 3.1, we have 3cS,. to prove 3,c53,
let x<S,, then:

C,(Ax)=0 (3.7)
And:
L) M (-N, (x)) = EL{LT) M (N (X))
Since:

AR (NAN =
Then:

LX) (N (x)) = ¢
Thus:

BLAX)N (-NxD = @
Together with (3.7), x€5.

Corollary 3.5: For problem (P*), let xeS', AcM' (X). Then:
§'={x e E":< A,g(x) >=0,dL'(,x) M (N, (x)) = AL, %) " (-N_ (TN}
Proposition 3.3: For problem (P), let xeS', AeM(x). Then:
S={xeE:C,(Ax)=0,0e 8L(h,x}+N_(x)}

Prove: Let:
8 ={xeE:C;{7,x)=0,0e LA, x) + N_(x)}

Obviously, we can obtain 3,c8 from Theorem 3.1
consequently, if xS, By Proposition 3.2, we have,xeS.
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Then, C; (A, x) = Oand there existEcoL (A x)N(-N.. (x)),
where S, is the set of Proposition 3.2. Hence, x£5..

Corollary 3.6: for problem (P), let xS, AeM (x). Then:

S'={xeE'~h,g{x)>=0,0€ 8L'(h,x) + N_(x)}

Note that, in the preceding corollary, the solution set
S 1s characterized in terms of a fixed Lagrange multiplier A.
Moreover, for any x£3, the Lagrange multipliers are the
same for each x=3.
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