http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan




Information Technology Journal 12 (4): 640-647, 2013
ISSN 1812-5638 / DOL: 10.3923/1t).2013.640.647
© 2013 Asian Network for Scientific Information

Iterative Linear Programming Design of Digital Lowpass
FIR Filters with Linear Phase

"Wankun Kuang, *Jingyu Hua, 'Chengfeng Ruan, Zheng Gao and 'Yuan Wu
'College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
“National Mobile Communication Research Labaratory, Southeast University, Nanjing, 210096, China

Abstract: The mimmax optimization is widely used in wireless commurnications to design the equiripple lowpass
filter, such as the Linear Programming (I.P) method. However, the conventional L.P method suffered from its
large computation loads. Hence, this study mvestigates an iterative LP method, in which constraints are
iteratively thrown on the non-uniformly distributed frequency grid to reduce the problem scale as much as
possible, resulting in much lower computations. Moreover, since the non-umiform frequency grid allows us to
precisely control the ripple, the proposed method also yields a better equiripple result compared to the
conventional I.P method and the Particle Swarm Optimization (PSO) algorithm.
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INTRODUCTION

Digital filters have been widely used in digital signal
process, such as the speech coding, the image processing
and the matched filter in digital communications (Lyons,
2004, Lee and Miller, 1998; Oppenheim et al., 1999). There
are two lkinds of filters, namely the Fiute Impulse
Response (FIR) filter and the Infinite Impulse
Response (ITR) filter (Hua ef al., 2012; Lai and Lin, 2010;
Tiang and Kwan, 2010). Since, the linear phase property is
umportant in wireless communication systems (Proakis,
2000; Ruan et al., 2012), the authors pay attention to the
linear phase FIR filter in this study. Moreover, because
the Low-Pass Filter (LPF) is widely used in wireless
communications, only the LPF design is studied in this
study.

There are many FIR LPF design algorithms including
the window method, the frequency sampling method, the
Least Squares (LS) method (Selesmck et al., 1996;
Zhang and Wu, 2011), PM algorithm (Antoniou, 1982) and
the linear programming method (ILP) (Rabiner, 1972)
(Samueli, 1988). Among these methods, the window
method and the frequency sampling method are simple
but difficult to produce the equiripple filter. Moreover,
previous work indicated that the L.PF of wireless
systems requests very rigorous performance specification
(Lee and Miller, 1998) and these strict requirements make
the LS method yields only the coarse equiripple filter.
Even though the original PM algorithm is very efficient, it
cannot take into account some special frequency domain

constraints directly. Thus, by utilizing complicated
iterative techmiques (Lai, 2002, Lai and Zhao, 2006)
proposed constrained Chebyshev methods for equality
and mequality constraints which usually required more
than ten iterations.

Another optional minimax method in LPF design is
the non-iterative LP (NILP) method (Rabiner, 1972) which
can make use of both the weight W and the vanable
frequency domain constraints. However, the NTLP method
uniformly discretizes the frequency range ([0, w Ju[w,, T])
into G discrete points, denoting as vector wp. These
operations cause two drawbacks. First, the obtained
passband (stopband) ripple would be larger than the
desired ripple slightly and the deviation is proportional to
1/G approximately. Second, the number of constraints
must be as twice larger as the discrete frequency number
(G) which increases the scale of the optimization problem.
Aside from the NTLP method, Samueli (1988) had exploited
non-uniform g, and the exchange algorithm in lus LP
based Nyquist filter design, where he mamnly focused on
the Tnter-Symbol-Interference (IST). However, the ordinary
LPF is quite different from the Nyquist filter, where people
care for another three performance specifications instead
of the ISL: mpples, transition band and stopband
attenuations. Hence, Samueli’s method cannot be applied
to design the LPF directly.

In this study, after comstructing a W-driven
optimization model analogous to the previous literature
(Rabiner, 1972, Samueli, 198%), an iterative LP (ILP)
method is presented to design the linear phase LPF, where
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constraints on the non-uniformly distributed frequency
gnid are employed to relieve the requirement of discrete
frequency number G. In each iteration, the nonlinear
root-finding method, 1.e., Newton method (Yang ef al.,
2005), is employed to refine the discrete frequency in the
local peak of zero-phase responses which improves the
precision of frequency vector wy, and helps to accelerate
convergence. In addition, it had been well-known that the
stop criterion was important for an iterative algorithm,
thus, a comparative study on some stop criteria are also
presented in this study in terms of the convergence and
the equiripple error. Moreover, in order to provide
engineers more flexible alter-natives to confront real-world
requirements, another two optimization models are
mtroduced with the above iterative techmque, where the
proposed algorithm suppress &, (9,) directly wlile
minimize 8, (8,) thereafter.

Of course, all the methods mentioned above are
deterministic in nature. With the rapid development of
computation algorithms, the heuristic algorithm had been
applied in filter design, such as the particle swarm (PSO)
algorithm (Kennedy and Ebethart, 1995; Zhan et al., 2009).
These heuristic algorithms are non-deterministic and
capable of dealing with both convex and non-convex
optimization problems. A comparison between the TLP and
PSO algorithm is also provided in our study.

CONVENTIONAL LP METHOD

Linear phase FIR filters: For linear phase FIR filters, the
filter coefficient vector h must satisfy:
h(m) = +h (n-N-1), O<n<N-1 (1)
where N denotes the filter length and the symmetric
coefficient ensures the linear phase (Oppenheim ef al.,
1999). Without loss of generality, the authors focus on

the type I lowpass filters, whose zero phase response can
be found as:

(2

H(o)= 3 2h(njcos{eo [~ n]} — h('2)

where we[0, n]. Equation 2 can be written in matrix form:

[H(©)) H(w,)..H(w)] = [e(@,), c(@,)..c(we)]<h (3)
where, [.]" represents the transposing operation:

h= [h(0), ht), -, {5 )"

o(eh = 2[cos[e(51—0)], cos[eo( %2 —1)],---,cos[ed], 1]".
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Performance specifications and constraints: Given the
filter length N, the filter performance specification
cludes the stopband attenuation A,, the ripples (9, 8,)
and the transition width B (that defined by two cutoff
frequencies w, and w,). Their relationships are analogous
to three angles in triangle (Losada, 2004), 1.e., one can at
most select the values of two of the above specifications
while the third specification will be determined by the
optimization algorithm.

According to Losada (2004), when N and &, are fixed,
improving §, or A, equivalently will lead to the increase of
the transition band width. The following constraints can
be used to limnit the transition band width:

Hiw,)21-0,, H (tg)z1-8, (H
which 1s a part of constraints n conventional LP (CLP)
methods. It 13 equivalent to enforce the actual passband
cut-off frequency to be no less than the specification w,
and the actual stopband start frequency to be no more
than the specification wg.

The CLP method in LPF design: Generally, the weighted
approximation error obeys:

E (w) = W (0) [H (0)-Hfw)] (5)
When the error curve of E(w) has equal peaks mn the

passband, the filter is known as the equiripple filter. In
Eq. 5, the weighting function:

1, 0=m=n,
W, 0 =@=Tn

W)= {

and the desired zero-phase response:

0=mw=m

1
— * ]
Hd(w)i{l), 0 <wLn

Similar to PM algorithm, the CLP optimization model
Eq. 6 aims to minimize the weighted ripple both in
passband and stopband while w,, wg and the weight value
W (equals to 8, &) satisfying the specification:

rriql}snf=8
o(e, )T xh—- Wx3=1, 0, €[0,@,]
—o(w,) xh—Wx8<-1, e, €[0,m,]
c{my,)" <h-1x 8<0, ), € [0,,7]
—c(o,) % h —1x 80, o, €[m,7]

(6)

where, the ripple & is regarded as the optimizing variable
and w, is an element of the frequency vector wp.
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ILP METHOD DERIVATION

Evaluating the extreme frequencies: Before detail
discussions, a frequency vector £, corresponding to the
extremum of the zero-phase response, should be defined
according to the equation:

a4
dw

9

H{m)=0

The actual passband and stopband ripple are
determined by approximation errors on the frequency €,
and the boundary frequency {0, w}. As for the equiripple
LPF, the specification w, and w; must be the alternate
pomnts (Oppenheim et af., 1999). Hence, people must take
into consideration the frequency vector Q... comprised
by (2 and the boundary frequencies {0, w,, W, T}. Now
€).... can be obtained by solving Eq. 7 by the Newton
root-finding method and an acceptable solution can be
obtained in about 4~5 iterations with absolute error less
than 107",

ILP method: Similar to Samueli (1988), (... 1s not the
subset of w, which means that the frequency domain
constraints haven’t been imposed on Q.. Therefore, the
absolute approximation error on frequency (2, tends to
be slightly larger than &, &;inmodel Eq. 6, 1.e., the
real-world ripple value would be larger than the desired
value and the deviation is determined by the difference of
Q_.. and the closest element in w,. In fact the above
deviation indicates that the filter designed by the CLP
method is not the optimum filter in the sense of minimax
approximation due to the coarse conversion from the
Semi-Infinite Linear Programming (SILP) to Finite Linear
Programming (FLP). The conclusion is supported by
simulations given in section 4.

Scrutinizing in Eq. 6, people explicitly see that the
constramt number 1s twice times as the element number of
wp, viz., 2G. The countermeasure to reduce the above
deviation is to increase GG which leads to the constraint
number grows rapidly and results in heavy computation
loads. Therefore, the compromise has to be made between
the desired performance specification and the
computation efficiency which is the bottleneck of the CLP
method in the FIR filter design.

One can imagine that if all constraints are imposed on
Q. the ripple i discretized model Eq. 6 can be
suppressed precisely. In fact, provided with constraints
on Q... people don’t need to import any other frequency
constraints. Therefore, it’s enough to unpose only one
constraint on each element of Q... while the CLP method
requires two. According to Oppenheim et al. (1999), there
are no more than (N+5)/2 elements (alternate points) in

642

Q... resulting in small constraint amounts. This strategy
avoids the degeneration of constraints in the conversion
from the SILP and to FLP and ensures that the filter
coefficient vector h produced by the ILP method is
equivalent to solution of the semi-infinite programming
model.

In essence, the ILP method 15 a kind of exchange
algorithms which is similar to the Remez exchange
algorithm 1 (Antomiou, 1982) and Multi-exchange
algorithm in (Adams, 1991, Selesnick ez al, 1996).
Moreover, the proposed algorithm absorbs the exchange
idea and extends CLP method to more general cases. The
iterative algorithm is given as follows:

Step 1: Imtalizing the frequency vector w,, 1e
discretizing [0, w Ju[w,, 7] into G points
Substituting w, mto a discretized model, such
as Eq. 6 or other models to be presented in the
next and calculating the filter coefticient vector h
Calculating the new frequency vector €2,
Checking the stop criterion. If the stop criterion
to be discussed in the next is satisfied, go to
(step 7). Otherwise, go to (step 5)

Substituting the frequency vector Q... into
discretized model. To be specific, the elements
corresponding to the local maximum in the
zero-phase response use the first or the third
inequality constraint in the selected P model
while the elements corresponding to the local
minimum in the zero-phase response use the
second or the fourth inequality constraint

2

Step 2:

Step 3:
Step 4:

Step 5:

Step 6: Solving the LP problem and update the filter
coefficient vector h. Go to (step 3)
Step 7: Stop

The initial frequency is generated in passband and
stopband umformly, where the passband mcludes:

points and the stopband includes:

-
(N 70— ay) 1

points (x| represents the minimum integer no less than x).
The above iterative process employs the CLP method in
(Step 1, 2) to obtain initial filter coefficients and performs
the iterative (exchange) algorithm in step 3 and 7 to realize
a simple minimax optimization. Tts convergence is
guaranteed by the exchange essence according to
(Powell, 1981) and extensive simulations demonstrate that
this algorithm converges mn no more than 10 iterations.
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Stop criteria applications: Several stop criteria can be
applied in the proposed ILP methods. The first is:
(8)

k4l k
Ao = ||‘th;m - ‘thmH < Eq

where, Q... ||| and g, represent the Q... of the kth
iteration, the vector length and a small positive threshold,
respectively. The second criteria 1s similar as that in
(Antoniou, 1982), i.e.:

A, — PO [E Q)] min[EQ]

9
max [E(,,,)] ®

W

where, mex (x) and min (x) represent the maximum and the
minimum of vector x. Note that E (x) is defined in Eq. 5.
The cost Ay characterizes the equiripple condition by
taking mto account the dynamic range of the weighted
approximation error in €,

There had been a conclusion on the one-point
exchange in by Powell (1981), viz., the exchange algorithm
produced a bounded equiripple error (formula 8.16) and
the error tends to be the same for adjacent iterations
(formula 8.24). Then, the following criterion can be
derived:

A = |ARANY <, (10)
where, A* and |x| denotes the stop attenuation at the kth
iteration and the absolute value of x.

According to Cetin et al. (1997), the iteration
terminates when there 1s no significance change in the
filter coefficient vector h, such as:

A, = |[b™-h| <e, 1)
where, I means the filter coefficient vector at the kth
iteration. All above stop criteria are suitable for the
proposed ILP method and which one produces the fastest

convergence speed and the best equiripple performance,
will be deeply investigated in the next section.

Additional optimization models: Tn order to enrich the
optimization option, another two optimization models can
be as follows:

e
c(o)’ xh +0%8, €1+3,, ®e[0,m,]
(" xh+0x3 £-{1+38), we[0,0,]
e(@’ xh-1x8, <0, we [o,,7]
—e(n3" xh-1x3, <0, we [o,7]

(12)
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where, both the filter coefficient vector h and the
stopband ripple & are regarded as decision variable. The
other is to minimize the passband ripple with fixed
transition band and stopband ripple &,

minf =3§,
B8,

c{@)’ xh-1x3, <1,
—o{w)’ xh-1x3 =-1,
o(e)Txh+0x8 <8,
—c(0)"h +0x8, <38,,

e [0,m,]
0e[0m ]

(13)
st
me[m 7]

we [e,,7]

where, the decision variables are the filter coefficient
vector h and the passband ripple 8,

Since, all three models are convex in nature, no matter
which model 15 used, the resulting tradeoff is the
fundamental tradeoff (Davidson, 2010) and cannot be
outperformed by any other models (Powell, 1981) which
implies that once the specification 1s given, all three
models could yield the same results. This pleasing
conclusion gives engineer more flexibility of model choice
in practical designs.

EXAMPLES AND ANALYSIS

Here, all frequencies are normalized by the sampling
frequency.

Example 1: Stop criterion discussion:

Specification A: N = {49, 75}, w, = 0.247, w; = 0.307
the logarithmic ripple R, = 2 dB, where:

o &
8, =% and § =(1+8,)x10%

R

Specification B: N =
R,=1{02,2 dB
Target: Comparing the cost functions with the TLP

method for model (12)

49, w,= 0.247, w; = 0.307,

From Fig. 1, all four cost functions (stop conditions)
yield similar curves and after six iterations, there exist no
signficant variations for Ag, Ay, A,and Ay, which indicates
that the proposed ILP algorithm can converged in about
six iteration, i.e., the convergence speed is fast and
acceptable. Moreover, according to the turming points in
Fig. 1, people clearly see that reasonable thresholds {eg,
€y, €, €.} can be {107, 107° 107, 107"}, respectively.
Since, the cost function €y depicts the equiripple degree
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107 Y(a) —8— /(N =49)
--8-- A, (N=75)
—A— A\, (N =49)
10° 1 —f-- A, (N =75)
—e— /(N =49)
3 0=/ (N=75)
£ 10" —— /\, (N =49)
E’ ==%=- A\ (N=75)
107 1
107" T T T 1
0 5 10 15 20
Iteration times
Fig. 1: Stop condition comparisons in example 1
07 Fixid §,
————— Fixid §
104} e — Fixid W
o 20 1 01
17
g
o
£ -30- -1
E
E -40 -2 T T T T
CZ%D 0.00 0.05 0.10 0.15 0.20
-50
-60
‘70 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Normalized frequency

Fig. 2: Magnitude response in example 2: x-axis is the
digital frequency and y-axis 13 the response
amplitude

directly, this study chooses €, = 107° as the stop criterion
in the next and other three stop criteria can be analyzed
sunilarly.

Example 2: Comparisons of three optimization models:

*  Specification: N = 49, w, = 0.24 ©, w, = 0.307,
R,=2dB

¢+ Target: Comparing the IL.P method for model 6, 12
and 13

Test result 1s shown m Fig. 2 which supports the
conclusion that specifications achieved by three different
models are the same. Tt is this equivalence that provides
engineers more optimal model alternatives in real-world
applications.

10
(b) —=— A\, (Rp=0.2dB)

--B-- A\, (Rp=2.0 dB)
—A— A\, (Rp=0.2 dB)

10"
=A== A\_(Rp=2.0dB)
—e— /\, (Rp=02dB)
5 Lo --©-- \_(Rp=2.0 dB)
= —— A, (Rp=0.2dB)
5 --3=-- A\ (Rp=2.0 dB)
;)g‘ 107I0_
107
10—30 T T T 1
0 5 10 15 20

Iteration times

Table 1: Test result of example 3

CLP (G=2N) CLP (G=8N) ILP
Wy 0.044516 0.044451 0.044444
s 0.066634 0.066662 0.066667
R, (dB) 0.22198 0.20205 0.20000
A, (dB) 54.368 54.502 54.537
Aw 0.0025¢-2 1.0128-2 5.1890e-10
Time (sec)  2.4390 0.2416 4.6465
Lt - - 4

CLP: Conventional LP method, ILP: Tterative LP method
Example 3: the LPF design in the GMC wireless systems:

s Specification: The prototype LPF inthe Generalized
Multi-Carrier (GMC) system (Hua et al. 2004), where,
N =217, w, = 1/18n, R, = 0.2 dB, roll-off factor «
equals 0.20

¢ Target: Minimizing the stopband attenuation A,

Here only inequality constraints are imposed on the
passband and stopband. Examples with transition
constraints, i.e., the constraint on w,, are to be given in
Example 4.

In the CLP method, there are:

{ Goy, H { Goy, H
G,
- -0 - -0

frequency pomts uniformly distributed in [0, w,] (fwg, 7).
G may equal 2 N or 8 N for different precisions. Test
results are shown in Table 1 and Fig. 3, where CLP and
ILP represent the CLP method and the proposed ILP
method. Note ‘I.t.” denotes the iteration times and “dB’ 1s
the logarithmic unit.

From Fig. 3 and Table 1, people explicitly see that the
CLP method produces frequencies (w, ) slightly
deviated from the desired specification and the deviation
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0 - G=2N
----- G=8N
'0.18- ...... _ILP
10
-0.20 -
20 4 -0.22
T T T
N 0.032 0.033 0.034 0.035
£ 30 -54.0-
(o]
= 40 -54.5-
E
g
= -50 -55.0 1 T T T
0.0960  0.0965 0.0970 0.0975 0.0980  0.0985
-60
I‘H H'? HH 1” IHH 1\7 | 1\! ”? I m ”I
e Q0 o 1 1
0.0 0.2 04 0.6 0.8 1.0

Normalized frequency

Fig. 3: Magnitude response in example 3: x-axis is the digital frequency and y-axis is the response amplitude

decreases as G increases. However, the proposed ILP
method produces accurate frequencies (w,, wg) exactly
equal to the desired specification. Moreover, the
proposed method fixed the passband ripple to 0.2 dB
precisely while the conventional method yields a slightly
larger passband ripple due to that the constraint condition
doesn’t impose on Q.. Tn addition, the computation load
of the CLP method increases drastically as G increases.
For example, m the case that G equals 8 N, 1t takes about
ten seconds, whereas the TLP method only takes about
four seconds which once again suggests its superiority to

the CLP method.

Example 4: The bandwidth constraint.

In wireless communications, sometimes people care
for the signal bandwidth, generally the -3 dB bandwidth
denoted by w,. if v, 15 constrained, what happens?

Specification: The same as example 3
Target: Investigating the influence
constraint

of w

[

Table 2 illustrates the influence of constraint on w..
Compared with Table 2, w; and R, are remains unchanged
while A, degrades sigmficantly. If one fixes w, = 1/18n
precisely, the worst case is presented. Relaxing the
constraint w,, i.e., allowing w, ranges from w, (1-{) to w,
(1+0), better A, can be achieved. On the other hand, the
constraint on w, results in larger R, which reduces the
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Table 2: Test results of example 4

Constraint condition r=0 7 =0.005 T =0.05
iz () 0.049435 0.049085 0.0416288
w, () 0.055556 0.055278 0.052778
s () 0.066667 0.066667 0.066667
R, (dB) 0.20000 0.20000 0.20000
A, (dB) 37.479 38271 47415

Aw 1.0928e-9 4.3146e-11 1.9053¢-11
Time (sec) 3.8934 4.8810 5.3027

Lt 4 4 4

transition band width and brings benefits in some sense.
To sum up, if one has to constrain w,, he had better throw
a range constraint and increase the filter length to ensure
Az=40dB.

Example 5: Comparison with the PSO algorithm:

Specification: The same as example 2
Target: Comparing the PSO method with the ILP
method

Optimization model: Model 6

PSO algorithm is one of the most important heuristic
algorithms. Tt was first introduced by Kennedy and
Eberhart (1995) and was further refined by many
researchers. Among them, the Adaptive Particle Swarm
Algorithm (APSO) (Zhan et al, 2009) exhibits good
performance. Thus, we exploited the APSO algorithm and
the canonical PSO algorithm as the optimization tools for
FIR filters design.
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There are two methods to obtain the filter coefficient
by PSO algorithm. The first one is to exploit the PSO
algorithm to search h directly (Ababneh and Bataineh,
2008), named the direct-search approach here. The other
approach is frequency sampling method, i.e., exploiting
the PSO algorithm to search samples in the frequency
domain and the filter coefficient h can be obtained by
solving a linear matrix equation (Lim, 1990; Gu et af., 2012),
named the indirect-search approach here.

The simulation results can be found in Table 3 and
Fig. 4. As for the direct-search approach, all the elements
of hare clamped at 0.5 (Ababneh and Batameh, 2008). On
the other hand, the non-uniformly sampling is exploited
for the indirect-search approach, where the passband
(stopband) 1s equivalently divided to:

frefee

points and the passband (stopband) samples are clamped
within [0.7, 1.3] ([-0.3, 0.3]).

The result shows that the indirect-search approach
outperforms the direct-search method and the APSO
algorithm outperforms the canomcal PSO algorithm.
However, even the performance of the best APSOT
algorithm is inferior to that of TLP and the former even

U)P

Nol oW “
2 n-{m-m)

]
- (w - w,)

Table 3: Test results of example 5

PSOP APSQP PSoFf APSOF ILP
R, (dB) 9.8974 3.6811 2.0509 2.0077 2.0000
A, dB) 37.684 43.567 47.877 48.041 48.0710
Ay 0.87699 0.82671  0.95239 0.75911 1.3302¢-8
Time (sec) 26423 26765 33737 30277 1.5095

D: Direct search method, F: Frequency sampling method

& )
= S

IS
S

Magnitude response

0.2

0.4 0.6
Normalized frequency

0.8

Fig. 4: Magmtude response in example 5: x-axis is the
digital frequency and y-axis 15 the response
amplitude
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takes significant large computation times. Accordingly,
we can draw a conclusion that in our study, the TLP
algorithm 1s superior to the PSO algorithm.

CONCLUSION

An iterative linear programming method for equinpple
LPF desigming 1s proposed in this study which exploits
the non-uniform frequency sampling and exchange
algorithm to reduce the constrain mumber (the discrete
frequency number) and overcomes drawbacks of the
conventional method. Numerical computations also show
that the proposed method achieves better performance
than conventional linear programming method and the
modern heuristic algorithms.
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