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Abstract: Many routing algorithms for chain wireless sensor networks were lack of theoretical analysis. It was
difficult to judge whether these algorithms meximally prolonged network lifetime. In order to solve the problem,
lifetime maximization algorithm for chain wireless sensor networks (LMA CWSN) was proposed. The
optimization method was used to research on the network lifetime maximization problem. Network optimization
model was established. Non-negative slack variables and logarithmic barrier function were introduced. Newton
method was used to solve the model. Finally, optimal value of network lifetime and optimal routing scheme were
obtained. Simulation results show that LMA CWSN makes full use of nodes’ energy to improve network
lifetime, converges to the optimal value of networls lifetime and optimal routing scheme after iteration calculation
and outperforms LEACH (low-energy adaptive clustering hierarchy), PEGASIS (power-efficient gathering in
sensor mnformation systems) and Ratio w (ratio weight routing algorithm). Under certain conditions,
LMA CWSN can guide the data routing for chain wireless sensor networks, try to meet the optimal scheme
when node transmission path and data amount are selected and provide reference to assess the performance

of other routing algorithms.
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INTRODUCTION

Tiny sensor technologies and inter-node wireless
communication capabilities give the wide application
prospect for Wireless Sensor Networks (WSNs). At
present, most applications of WSNs are divided into two
categories: monitoring and tracking. Momnitoring mcludes
indoor and outdoor environmental monitoring, health
monitoring, power monitoring, inventory —position
monitoring, factory automation monitoring, earthquake
and structural momtoring. Tracking includes ammal,
human, vehicle and other targets tracking. In short, WSNs
have been applied to many fields such as environmental
and weather momtoring, floods warmng,
management, smart home and intelligent transportation. It
presents tremendous commercial value and application

farm

potential, brings far reaching impact to the field of human
production and life and 1s taken more and more attention
by industry and academia (Yick et al., 2008).

Currently, the research on WSNs routing algorithm
have achieved some results. Lindsey et ol (2002)
proposes a chain routing algorithm (PEGASIS). All nodes
i the momtoring region self-orgamze into a link by
greedy algorithm. In data dissemination phase, each node
receives the information from nearest upstream neighbor
node. Then it transmits the fused information to sink node

node. The
algorithm assumes that all nodes can commumicate with

through nearest downstream neighbor

sink node. It is obviously not feasible in the actual
network. The nodes which are far away sink node cause
excessive data latency. Heinzelman et al. (2000) proposes
Low-energy Adaptive Clustering Hierarchy (LEACH).
LEACH includes three-tier network architecture such as
sink node, cluster-head node and sensor node. In the
algorithm, sensor nodes transmit the sensed data to
cluster-head nodes. Cluster-head nodes fuse the data of
sensor nodes and transmit them to sink node by multi-hop
among cluster-head nodes. Tn large-scale WSNs or node
energy imbalance WSNs, LEACH algorithm randomly
selects cluster-head nodes which may be concentrated in
special region and can not cover the entire monitoring
region. Tt easily leads to split network and increase node
energy consumption. Zhu et al. (2009) proposes ratio
weight routing algorithm (Ratio w) and sum weight
routing algorithm (Sum_w). The algorithms consider
energy consumption of link communication, node residual
energy, energy consumption factor and residual energy
factor to comstruct a new weight function. Dijkstra
algorithm 1s used to comstruct the shortest path tree
whose root is sink node. All nodes transmit the data to
sink node along the shortest path tree. Shin and Sun
(2011) proposes Chain Routing With Even Energy
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Consumption (CREEC). CREEC improves the network
lifetime by two strategies: Firstly, energy distribution of
each node 1s balanced as far as possible. Secondly, the
node energy consumption 1s prelininarily simulated and
the feedback mechanism is used to save node energy.
Chen et al. (2009) and Chen and Lin (2012) divide the
sensing region of WSNs into a number of smaller regions.
The nodes construct a link in each smaller region. All
nodes in the network self-organize into chains. The above
references research on the WSNs routing protocol to
mnprove network lifetime and reduce node energy
consurmption. They focus on transmission path selection
of network packet. But the algorithms are lack of
theoretical analysis. Tt is difficult to determine whether
these algorithms have maximum network lifetime.
Wang ef al. (2008) breaks multi-sink node routing problem
into a number of single-sink node routing problem. Tt
considers constraints with four core parameters such as
transmission flow, node energy, signal-to-noise ratio and
transmission bandwidth. [t establishes the network
lifetime optimization model and uses the KKT method to
obtain the optimal solution. The algorithm is fit for small
WSNs. With the expansion of network, the algorithm
needs to consider too many factors and equality
constraints. The solution process is complexity.

Some routing algorithms such as PEGASIS, LEACH
and Ratio w for CWSNs are lack of theoretical analysis.
It 18 difficult to judge whether these algorithms maximally
prolonged network lifetime. Tn order to solve the problem,
lifetime maximization algorithm for chain wireless sensor
networks (LMA CWSN) 1s proposed. The LMA CWSN
can obtam the optimal value of network lifetime and
optimal routing solution. Tt can guide the data routing for
CWSNs, try to meet the optimal scheme when node
transmission path and data amount are selected and
provide reference to assess the performance of other
routing algorithms.

NETWORK OPTIMIZATION MODEL

WSNs are widely applied to CWSNs, such as
unattended dangerous status monitoring of freight train,
status monitoring of single street lamp, online monitoring
of transmission line, factory automation monitoring. As
shown in Fig. 1, the sensor nodes sense and gather the
information in the monitoring region with various types of
sensors, transmit the sensed information te sink node
through CWSNs. The routing of CWSNs has many
problems. If traditional stepwise multi-hop routing
protocol is used, the routing path will be single and nodes
which are near the sink node will frequently forward the
mnformation of other nodes. It leads to high node energy
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Fig. 1: Chain wireless sensor networks

Table 1: Natations

Symbol _Definition Symbol Definition
G (V, L) Undirected connected graph, E; Tnitial energy of node i
represents a WSN
v Set of nodes I Transmission data amount
from node i to node j
L Set of links Si Sensor rate of node i
V] Number of nodes Ruw Node maximum
transimission rate
N(i) Neighbor node set of node i E,,. Unit data energy
consumption pararneter of
circuit electronic
UG Upstreamn neighbor node £ Unit data energy
set of node I consumption pararneter of
signal amplifier
X Downstrean neighbor ¥ Data loss coefficient
node set of node i
Ay Maximum communication £ Positive coefficient of
distance of node logarithmic barrier fimction
dy Distance between node &} Positive coefficient of
i and node j logarithimic barrier fimction
B Sink node diy Distance between adjacent
nodes
T Network lifetime Ty Unit matrix
gk Newton step (a positive AxF Newton increment in kth
number) in kth iteration iteration
xk Solution vector in kth wk Dual Newton increment in
iteration kth iteration
A Constraint matrix f(x) Objective function

consumption and premature failure and reduces the
network lifetime. If each node directly transmits the
information to sink node, the nedes which are farther
away sink node will consume more energy and fail
prematurely. Finding a CWSNs routing scheme to
maximize network lifetime is great significance. Therefore
LMA CWSN is proposed in the following. The notations
in the article are in Table 1.

System assumptions: Considering the application
scenario of CWSNs, it 18 assumed that CWSNs have
following characteristics:

The positions of sink node and sensor nodes are
fixed. All sensor nodes are umformly distributed on
each link. Sink node is distributed on one end of the
link

Because the deployment positions of nodes are
pre-planned, sink node and sensor nodes can obtain
the entire network topology information

All sensor nodes have the same performance (such
as radio maximum transmission power, maximuum
communication radius, distance between adjacent
nodes, node energy consumption model et al.
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All sensor nodes in the network need to sense and
transmit data. They take on data gather and relay
tasks and transmit date to sink node by direct or
multi-hop mode

Energy of each sensor node 1s limited. But energy of
sink node is unlimited

Optimization model establishment: As shown m Table 1,
if node j is in the communication range of node 1, node j is
the neighbor node of node i. According to the definition
of symbols, the equations N(1) {1ld,=dm JEVE,
U(i) = ikldye>dig, N(1)} and X(i) = {k|de<dg, N(1)} are
obtained. According to the characteristics of CWSNs,
node i receives the data from upstream neighbor nodes
and transmits data to sink node through downstream
neighbor node (Hua and Yum, 2008).

According to the definition of network lifetime, the
network lifetime maximization problem is transformed into
the following optimization model. The goal of network
optimization model 1 1s to maximize network lifetime T and
obtain optimal value F.

max T (1)
st: 3 F =TS+ 2 F, vVieV 2
EX) EU

Y E+ Y F<T*R,,. YieV (3)

EE) EU)
¥ EE,. + E F(E,, +&d)<E, vieV (4

£U0)

Ez0vieV, YeX() &)

where, Eq. 2 follows from flow balance constraint. The
transmission data amount of node i consists of the
received data amount from upstream neighbor nodes and
its sensed data amount. Equation 3 follows from maximum
data transmission constraint. Node data transmission
bandwidth 1s limited and the total transmission data
amount is also limited. Equation 4 follows from energy
constraint. In the network lifetime, for node i the energy
consumption of received data 18 %y, E,.,. the energy
consumption of transmission data is Xz F; (Egeted’).

Solution of optimization model: The non-negative slack
variables y, and z, VieV are introduced. The formulas
Eq. 4 and 5 are transformed into equation constraints:

;}) ;)F +y, - =0, ViV (6)
¥ BE. + X FE,, +ed)+z-E =0, vieV (N
EUG) EX)
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The objective function of optimization model 1 is not
concave function. The optimal value obtained by the
Newton method may be not the global maximum value.
Equation 1 can be transformed mto min{-logT). Its
optimization model is transformed into:

min(-logT) (8)
s.t.: constraints of Eq. 2, 5, 6 and 7:
z>0, y,=0, ¥ieV (9)
Let:
f(x)=-ElogT-8Y, Z log(F,)— leog(y = leog(z y (10)
=T Exh
where, 01, £ is much larger than 6.
The optimization model is modified, i.e.:
min(f(x)) (1)
st A*x =
where, x = [T{F,} vi...yy z...2z, ¢ = [0 O H.
H=[E.E,. .... Byl
T
[—sl -8, - —ﬁvd €3 0 0
A=|[Ruw R - Rl (G I, 0 (12)
0 @) 0 I,

The node can communicate with n = d,_/d,, nodes.
Vector x has (n+2)[V|-(n*-n)2+1 elements. Matrix A has
3VI*((m2)|V|-(n’n)/24+1) elements. According to formula
12, some elements of A are defined as follows:

1 Node i transmits data through link k
Node i receives data through link k
Others

(13)

0

1 Node itransmits and receives data through link k (1 4)
0 Others

o

:

Newton method is used to solve the constrained
optimization model 11. An initial solution vector x° is
determied m any feasible domain. The update iteration
formula of Newton method is:

Eoee

Eoer
0

Node i receives data through link k
Nodei transmits data through link k
Others

T (15)

K = xrsh A

(16)
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Axt
Eq 17:

is obtained based on the following linear

R

Let H, = V*fix"). According to Eq. 17, the solution of
Ax* can be divided into the following two formulas:

Axc
o

VM AT
A 0

V()
AxF-c

(17)

(AH, ™ ADw* = (Ax"-c)-AH, V" (18)
AxF = -, (VIE+HATW) (19)
where, f(x") is secondary derivable for x *H,” 'is the

positive diagonal matrix.

The Newton step s” is:
1 K
v AxFy>0.25 (20)
1 MxF)£0.25

where, A(x*) = Jax"y Ve )ax* . The s* guarantees that each
element of x*' is non-negative (Ren et al, 2012). The
following is convergence analysis of LMA CWSN when
s* is determined by formula 20.

Convergence analysis: To analyze the convergence of
LMA CWSN, the definition of self-concordant function
is introduced.

Definition 1: (Wei et al., 2010): A convex function
g:R-R, 7xcR. If the nequality |g’’'(x)|<2g"(x)" holds, the
function g is self-concordant function.

Lemma 1: (Wei et al., 2010): A convex function g:R*~>R,

wx, veR® if function g(t) = g(x+tv) is self-concordant

function, the function g is also self-concordant function.
Let function:

f.(s) = fx"+sAxH) (21)

where, f, and f,(s), respectively denote f{(x*) and f{x*"):

fx")=—ElogT" — 03, ¥ log(F))— BEIOg(y) BZlog(a) 22)

eV EX

Theorem 1: The function f, in formula 21 is self-
concordant function. The function f(x) in formula 10 1is
also self-concordant function.

Proof: f(s) is convex function. The second and third
derivatives of f.(s) are:
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ox

K +saF]

Ay}
sAy

Az Y
z +sAz]

(23)

T

(24)

E(s)= z{ﬂ M“‘T P>

i ()

J o)

T * e;[ A

|

: AR
+80 L
3E

+ SAF:;

ATH

E[Tl‘ + AT

a5

3 AZ;?
+5Ayf} +6§[zf

[re)=2 e

Because £, 0, T. F,, y,, z are non-negative and 2021,
we have:

- AT AR} A Az} i
2f,(s>”’=2{a(T,+ FREIPIS S R M Yi\,heﬁ(ﬁ ’AZ:fT

. 5 i
>2[§(T) SATI) ] +Z} %,[ F)+SAF1) ] +,=zv'[ y +sAy ] +§{qz SAZl ]
- e e |2

=" .) +9 EVE m sﬂFn Y |+ Zl T

EY o Fray Y +ez( +82( A%y

Prear Tes, 1-" sAF’ T e +S"323

=[frs)
(25)

According to Definition 1, fi(s) is self-concordant
function. According to Lemma 2, f(x) is also self-
concordant function. Therefore, the Theorem 1 is proved.
According to the above defimition and theorem, the
convergence of optimization model (11) 1s analyzed in
attenuation convergence phase (A(x*)>0.25) and quadratic
convergence phase (A(x")=0.25).

Attenuation  convergence  phase: Atteration
convergence phase researches on the changes of
objective function wvalue in each iteration when

{M(x")=0.25) . First Lemma 2 is given.

Lemma 2: (Wei et al., 2010): g:R~R 1s self-concordant
function, ¥seR and s=0. If sg“(0)**<1 holds, the following
inequality holds:

g(s)<g(O)r+sg’(0)-sg"(0)"*-log(1-sg"(0)")

Theorem 2: If i) =.ax" Vi ax > 025 holds, the
following mequality of function f{x) m formula (10) holds:

(26)

N (L) 27
£ f(xt) < 0oz 00 (27)

Proof: According to Eq. 21, we have:
VI(xHAK+A W = V(x5 (28)

Equation 28 multiplies (Ax*)" on both sides, i.e.:

( ATV A H A TATF = «(Ax) VR (29)
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AAXE =0, then;
(AXN)VH(HAXE = (A VD) (30)

The first and second derivatives of function f(s) are
obtained according to Eq. 30, 1.e.:

B 0)= (V6 )TAx = (e e = Ay B

£ (0= (A" V(5 )Ax® = A (32)

According to Lemma 2, O<s <1/(A(x*)+1), we have:

£ (5) — £ (0)< —sh(x"F — sA(x") — log(l - sA(x*)} (33)

According to Eq. 20 and 21, we have:

P Ay —F ) =E - F (002 - A - A - log1— A )
AGF A A

e Ty T gy ) S A
(34)
1s Taylor expanded, 1.e.:

b3 ky l(xk)z 35
log(AG™) + 1) £ A(x") RS TR (35)

According to Eq. 34 and 35, we have:
Ky e Ry AMxt)? 36
T (36)

When A(G9>0.25, -Ax9Y2(1+A(x9) is monotonically
decreasing function of A(x"). When A(x" infinitely tends
to 0.25, 1t has maximum value, 1.¢., the mequality Eq. 27 1s
obtained. Therefore, the Theorem 2 is proved.

In summeary, according to the Theorem 2, mn
attenuation convergence phase, the objective function
value drops by at least 0.025 than the previous iteration
value. After iteration calculation, the objective function
value tends to be mimmum value. At that time it enters
quadratic =~ convergence phase from  attenuation
convergence phase.

Quadratic convergence phase: Quadratic convergence
phase researches on the changes of objective function
value in each tteration when A(x*)<0.25. The Lemma 3-5 is
given.

Lemma 3: (Wei et al., 2010): g:R"-R is self-concordant

function. If A= Jx -y Vetx)(x - y) <1, VX, yeR" holds, the
following inequality holds:
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(- ATV < T V(v )T < m 71}»)2 TV ig(x ) (37)
where, TeR".
Lemma 4: (Wei et al, 2010): gR*R is self-

concordant function, Ax* is Newton increment. If

A = Jlax®)T Ve (" )ax®) <1 holds, the following inequality
holds:

12
(" + AT Vi (x" + A" + AxY) sﬁ\,’(x“ + A Vg (x")(x" + Ax)

(38)

Lemma 5: (Wei e al, 2010): g:R-R 13 self-

concordant function, Ax® is Newton increment, g is

the mimmum value of objective function If
Ay = JlaE T Vg A <068 holds, the following
inequality holds:

g 2 g(x)-Ax)’ (39

According to Lemma 3-5, the Theorem 3 can be
deduced.

Theorem 3: ' is the minimum value of function f(x) in

Eq. 10, If agx*)= Jiax") VP ax® <0.25 holds, the following
inequality holds:

(0,752

(40)
(225"

lim supf(x*™)—f" <

Hyes

Proof: According to Eq. 24 and Lemma 3-4, we have:

A'(Xl« )2

k4l 2: Ly T 72 k k k+1<
A = AT E(x® + & Ax)Ax e

(Axk+1)TV2f(xk )Axk E

A'(xk)g & 1 AT vl prok o kALK Tl _ A’(Xk)g %41
Sl—}\(xk) WJ(AX V" + A ) AX —Wl(x )
(41)
Equation 41 is simplified with A(x*")=0, ie.:
| Ax™y? 42
M (42)
When A(x)<0.25, Eq. 42 is simplified:
A< Mty _ ARy (43)
1-025 ©.75°
I o o S i (44)

0757 75 (0.5

where, m 1s a positive mteger. According to Lemma 5, we
have:
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o - AEy (0.257 _075° (45
) - £ <A < < = (45)
(T =AT <(0.75)2"“;'2<(0.75)2”‘“'2 (2257

Then, the Eq. 40 13 obtained. In quadratic

convergence phase (A(x)<0.25), after iteration calculation,
the objective function value converges to the minimum.
Therefore, the Theorem 3 is proved.

From the above content, Newton method 1s used to
solve the network optimization model 1 and obtam the
optimal value of network lifetime.

Algorithm implementation: LMA_ CWSN is a centralized
algorithm. After it obtains the node information and
executes the following steps to calculate the optimal value
of network lifetime:

Step 1: T°, F’;, v’ 2, and other parameters are initialized.
The feasible mutial value of strict positive vector
x" is determined

Step 2: According to x*, Vi(x"), H, ™, " and Ax* are
calculated

Step 3: Tf k<M, go to step 4, else go to step 5

Step 4: According to Eq. 20, x*! is updated, k = k+1, go

to step 2

Step 5: The optimal value of network lifetime and the

corresponding  values F

i obtained.
LMA CWSN is end

are

Pseudo code of LMA CWSN is as follows:

: Initialization phase;

2:k=0;

3: while (k<M)

4: According to vector x¥, Vi(x®), H,™!, w* and Ax® are calculated,

—

AMxf)>0.25

A

1
st = AEM +1
1

X =y gRA K

k=k+1;

end

The optimal value of network lifetime and the comresponding values F;
are recorded

AMxFy<0.25

Rl

Time complexity of LMA CWSN is time complexity
of Newton method which iteratively executes M times.
Time complexity of Newton method relates to the matrix
multiplication in Eq. 22 and 23. Because time complexity of
A %A,y is B(anb), its time complexity is @(V]). Finally,
time complexity of LMA CWSN is @(M|V["). In short, the
time complexity of LMA CWSN 1s high. Its convergence
needs certain time. Only when the energy consumption of
data transmission 1s far greater than the energy
comsumption of  optimal calculation,
LMA CWSN can work well.

solution
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SIMULATION AND ANALYSIS

Simulation parameters: In the simulation, the energy
consumption of wireless data commumcation 15 only
considered. The energy consumption of calculation, data
fusion and query packet transceiver are not considered.
The energy consumption of timeout retransmission and
debug in the data transmission process are also not
considered. In the network simulation region, the
ordinates of all nodes are the same and the abscissa
interval between adjacent nodes 15 20 m. The simulation
parameters in Table 2 are selected to iteratively calculate
the network lifetime and the transmission data amount of
nodes.

Simulation results analysis: In the smmulation, the
mumber of nodes is 10 and the related parameters in
Table 2 are selected. The node distribution is shown in
Fig. 2. The five-pointed star represents sensor node. The
square represents sink node. All nodes arrange in the row,
transmit the data to sink node with forwarding nodes and
form the chain wireless network. The node IDs from left to
right are 1-10. Then the LMA CWSN 1s used to research
on its performance. The network lifetime and transmission
data amount of nodes are iteratively calculated 2000 times
according to the algorithm implementation. Then, Fig. 3
and Table 2 are obtained.

The network lifetime of each iteration 1s obtamed and
normalized. As shown in Fig. 3, when the iteration number
increases, the network lifetime mcreases. When the
number of iteration 1s lower than 1000, the curve of
network lifetime is quadratic change. When the number of

Table 2: Sirmulation parameters

Parameters Value Pararmeters Value
E.p. 50 nJ bit™! g 100
2s 100 pIbitim™= v 2
i 80m M 2000
dy 20m [V 10-60
E 10007 8 100 kbit min~!
0 1 Roee [V]*S; bit min™!
6 2.0

E 15 -

"5,

Sk K Kk KX Kk Kk Kk Kk Kk KX
;:.E

§ 0.5 A

2

= 0.0 T T T

0 50 100 150

The coordinate of x axis (m)

Fig. 2: Node distribution when [V| =10
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Iteration number
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Fig. 3: Convergence of networlk lifetime

Table 3: Transmission data amount among nodes

Transmission node ID Received node TD (transmission data amount)
2(1.74), 3 (L.67), 4 (1.68), 5(7.58)
3(0.04), 4 (0.02), 5 (0.01), 6(14.3)
4(0.02), 5 (0.01), 6 (0.01), 7 (14.4)
5(0.01), 6 (0.01), 7 (0.03), 8(14.4)
6 (0.02), 7 (6.30), 8 (4.80), 9(9.17)
7(0.02), 8 (9.07), 9 (4.80), 10 (0.03)
§(0.01), 9 (23.6), 10 (9.78)

9(0.01), 10 (40.9)

10 (63.4)

N=T I e R o

The order of magnitude of transmission data amount is 10° bit, 1-9: Sensor
nodes, 10: Sink node

iteration is larger than 1000, network lifetime essentially
converges to the optimal value. Therefore, according to
the analysis of theory and simulation, LMA CWSN 1s
convergence and has quadratic convergence rate.

Table 3 shows the routing scheme which can obtain
optimal network lifetime. As shown in Table 3, each node
transmits data to downstream neighbor nodes. When the
nodes can not communicate directly with sink node (such
as nodes 1-5), they tend to select the farthest downstream
neighbor nodes. For example, node 1 15 far away from sink
node. To transmit the data to sink node, it tends to select
the forwarding nodes 5 which is its neighbor node and is
the nearest to sink node. It can reduce the energy
consumption. When the nodes can directly communicate
with sink node and there are several downstream neighbor
nodes between them (such as nodes 6-7), to balance
network lifetime and energy consumption, they also tend
to select the downstream neighbor nodes. When the
nodes are close to sink node (such as nodes 8-9), to save
energy consumption of commutation, they directly
transmit data to sink node in single hop.

In order to reflect the effectiveness of LMA CWSN,
LEACH (the probability which sensor node 1s selected to
be cluster-head node is 0.25), PEGASIS, Ratio w and
LMA CWSN are compared. The 10, 20, 30, 40, 50, 60
numbers of nodes (includes a sink node and other sensor
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1200 7@ILMA_CWSN BPEGASIS OLEACH BRatio w

3 4 5 6 7 8 9

Node ID

(=3

(=3

(=}
1

800 A

600 -

400 A

Node energy consumption (J)

200

Py

Fig. 4: Total energy consumption of each nodes when
[V]=10

nodes) are respectively selected. The related parameters
in Table 2 are selected to calculate the network lifetime
and total node energy consumption.

As |V| =10 for example, the total energy consumption
of each node is shown in Fig. 4 when the first node runs
out of energy. The node energy consumption of
LMA CWSN distributes uniformly. Each node consumes
about 1000 J and all nodes are almost simultaneous failure.
The node energy consumption of Ratioc w and PEGASIS
relates to the distance between itself and sink node. The
nodes which are closer to sink node consumes more
energy. And vice versa the energy consumption is lower.
The node energy consumption of LEACH distributes
unevenly. Node 5 and 9 consume more energy. Others
consume lower energy. It is the reason that LMA CWSN
can find the optimal network lifetime and routing scheme
and nodes make full use of its energy to improve network
lifetime. In Ratio w, nodes select the neighbor node with
smallest link weight to transmit data. Tn PEGASIS, nodes
select the nearest downstream neighbor node to transmait
data. LEACH randomly selects cluster-head nodes to
establish cluster. The three algorithms all focus on
transmission path selection of network packet and
propose various data routing schemes. But these schemes
are not the optimal routing scheme. When the network 1s
failure, some nodes still have much energy.

Tn the simulation of LEACH, PEGASIS, Ratio w and
LMA CWSN, in order to facilitate the comparison,
network lifetime is defined by the number of Data
Gathering Cycle (DGC) from the time at which network
starts to the time at which the first node runs out of
energy. Where, a DGC represents the time all nodes sense
100 kbit data and transmit them to sink node. As shown in
Fig. 5, the network lifetime of LMA CWSN (the number
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14000 ——LMA_CWSN
—+— PEGASIS
12000 —©—-LEACH
—k— Ratio_w

Network lifetime (DGC)

T T
30 40
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Fig. 5: Network lifetime comparison

of DGC) is larger than that of Ratio w, PEGASIS and
LEACH. Itis optimal. The network lifetime of Ratio w 1s
second. The network lifetime of LEACH 1s the lowest. It is
the reason that TMA CWSN uses Newton method to
maximize network lifetime and obtain optimal value. When
the number of nodes mcreases, the difference m network
lifetime between Ratio w and LMA CWSN 15 smaller. It
is the reason that when the number of nodes increases,
the transmission path selection of Ratio w is reasonable
and 1s relatively accordant with optimal routing scheme.

CONCLUSION

The network lifettme maximization algorithm for
CWSNs 1s researched. Firstly, the lifetime maximization
problem is transformed into network optimization model.
Secondly, the Newton method 15 used to solve the
optimization model. Nextly, the convergence of
LMA CWSN 1s theoretically analyzed, sinulated and
verified The influence of node optimal routing scheme
and the corresponding node energy consumption on
network lLifetime 1s siumulated and analyzed. Finally,
LEACH, PEGASIS, Ratio w and LMA CWSN are
compared.

LMA CWSN provides optimal value of network
lifetime and optimal routing scheme, guides the data
routing for CWSNs, tries to meet the optimal scheme
when node transmission path and data amount are
selected and provides reference to assess the
performance of other routing algorithms. After further
unprovement, the algorithm can be applied to other types
of WSNs. But the algorithm has large computation. Only
when the energy consumption of data transmission is far
greater than the energy consumption of optimal solution
calculation, LMA CWSN can work well.
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