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Study on Voltage-stabilizing Control of ICPT System
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Abstract: As nonlinear switch unit leads to higher-order switch nonlinear behavior, it is difficult to build an
accurately model and control the output voltage of the ICPT system. To address this problem, this study
presents a neural network-based control strategy to stabilize the secondary output voltage. This strategy makes
full use of the nonlinear function approximation of the neural network. To converge the neural network, a
multi-layered feedforward neural network based on back-propagation algorithm has been designed via learning
train samples. Besides, to ensure the stability of output power, the neural network controller has been employed
to stabilize the secondary output voltage by regulating the mput voltage. Finally, simulations and experimental

results have verified that this control strategy is feasible.
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INTRODUCTION

Inductively Coupled Power Transfer (ICPT)
techmology 1s @ new mode of power supply, which utilizes
high frequency magnetic fields to transmit power from the
source to the receiver in the form of electrical isolation
(Cannon et al., 2009; Valtchev et al., 2009, Sun et al.,
2012). It effectively solves the seamless access problem
and changes traditional supply mode that transmit power
directly via electric conductor. ICPT technology has
extensive application prospects in various industries,
such as manufacturing (Moradewicz and Kazmierkowsli,
2010), medicine (Madawala and Thrimawithana, 2011) and
(Tian et al, 2012)
environmental friendly, convenient and flexible.

An ICPT system has a primary side and a secondary
side. When the secondary impedance varies, the reflected
impedance will be introduced in the primary coil due to the
electromagnetic coupling effect. Hence, the primary
exciting current will decrease and the operating frequency
of Zero Voltage Switching (ZVS) will drift (Hu et al., 2000),
which weakens the capability of transmission power and
reduces the transmission efficiency. If the frequency drift
is too large, multi-cycle working points phenomenon will
appear and cause big influence on operational stability of
system. When the frequency offsets the mherent
frequency and the primary mput voltage remains
constant, the pickup voltage will drop sharply and
generate bigger fluctuation, causing hidden danger for the
normal load operations (i et al., 2012). Therefore, to
ensure the operational stability of system and to improve
its transmission efficiency, it 1s important to stabilize the
secondary output voltage.

electric vehicles since 1t 1s

Current control strategies for the secondary output
voltage are mainly based on the primary phase-shifted
control (Yugang et al, 2008), the primary detuning
control (31 ef al., 2008) and the primary energy injection
control (L1 ef al., 2009). Although no auxiliary circuit 1s
needed for the primary phase-shifted control as it
regulates the voltage via flexible power switches to
change the phase-shift angle, the switching loss and
switching stress increases because of the hard switching
mode. As for the primary detuning control, its demand for
an auxiliary circuit not only increases the control difficulty
and system weight but also reduces the total efficiency.
Besides, the primary energy injection control will cause
sharp decrease of frequency when the system is in light
running, not to mention that only when the pickup
voltage is higher than the regulated voltage needed, the
output voltage of ICPT system can be regulated via
utilizing the decoupling method for the short circuit of
auxiliary coil.

In addition, the TCPT system usually presents
complex higher-order switch nonlinear behavior, for it
comprises a number of nonlinear switching devices and
energy storage components. Hence, modeling and control
design are rather complex, particularly when the dynamic
behavior of ICPT system is under the action of external
disturbance. By contrast, neural network control doesn’t
rely on accurate mathematical model of system and it
reflects complex nonlinear objects that are difficult to
describe accurately at arbitrary precision (Coban, 2004,
Bigdeli et al., 2008, Keshavarzi et al., 2012). Thus, neural
network control is entitled to the abilities of learning and
adaptation, as well as practical value in the applied control
systermn.

Corresponding Author: Yong Tian, College of Automation, Chongqing University, Chongqing 400030, China



Inform. Technol. 1, 12 (4): 664-671, 2013

Based on the review above, this study proposes a
neural worlc-based control strategy to stabilize the
secondary output voltage of ICPT system. During the
control period, the system will work m the soft-switching
mode and utilize nonlinear function approximation
character of the neural network to build a neural network-
based control model when the system gains input
disturbance and load step. This model will then
dynamically regulate the primary input DC voltage by
detecting the actual secondary output voltage, and thus
it will keep the secondary voltage at the desired value.
Fmally, simulation and experimental results have verified
the feasibility of this neural work-based control strategy
to stabilize output voltage of the ICPT system.

IMPROVED ©-TYPE ICPT SYSTEM

Figure 1 shows the circuit topology of an ICPT
system with mmproved m-type resonant link. Similar to
traditional ICPT system, it also consists of the primary
and the secondary sides. At the primary side, a quasi-
current source is built on the input DC source E,, and the
filter inductance L, wlile a lgh frequency energy
conversion link 18 made of two power switch pairs (S, S,)
and (3,, 8,). Therefore, the forward and backward energy
injection modes can be triggered by alternating break-over
of the switch pairs. When the power switch pairs are
switched at the zero-crossing of capacitor voltage, a ZVS3
operation would be realized in the system. At this
moment, the effective value of the capacitor voltage u,
can be calculated by:

Ty (1)
i 7 ﬁ

In this system, capacitor C, and inductance L, form
the bias network as an improved part of the n-type series-
parallel resonant circuit (Dai et af., 2010), which ehminates
the harmonic distortion, improves the resonant quality of
system and operation stability, increases the rated power
of reactive circulating-current, reduces the dynamic effect
caused by parameter uncertainty of system and load

Secondary part

Fig. 1: The circuit topology of n-type ICPT system
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switching, and eliminates the EMI interference. The bias
inductance and capacitor are shown below:

I, =1,=i,%m
L, =L /m (2)
C, =C_xm

where, m is the bias facto, T, is the current across the bias
inductance, 1, 1s the current on the bias capacitor.

C, and L, comprise the series high frequency
resonant link. The sinusoidal exciting current with low
distortion degree is produced at the primary side.
According to the electromagnetic induction principle, the
high frequency simusoidal power 18 transferred from the
transmitter to the pickup by mutual inductance M.

At the secondary side, the parallel resonant network
with the same frequency at the primary side mncludes the
capacitor C, and the receiver coil L, The output high
frequency power u,, realizes the bidirectional rectification
of high frequency sinusoidal current by uncontrollable
rectifier full bridge. As the filter choke of the rectifier
bridge, L; filters out the high frequency AC current
effectively, and only allows low frequency AC current and
DC current to pass. Then, the power across the choke is
output on the load R,.

THE VOLTAGE-STABILIZING CONTROL
STRATEGY OF ICPT SYSTEM

To get the mamn factor which influences the
secondary output voltage, rectifier link, filter link and load
resistance R; can be equivalent to the equivalent
resistance R, as shown in Fig. 2, while the power losses
of rectifier and filter link in the secondary are ignored.

The total impedance of the secondary coil is shown

inEq. 3

1

Z= (3)
*TL/R_+ joC, :

+joL

The reflected impedance from the secondary to the
primary is shown in Eq. 4

= C, 211“

-«

Fig. 2: Equivalent mode of the secondary side
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Equation 4 shows that the reflected impedance varies
with the equivalent resistance R, which will lead to the
drift of primary resonant current. In this case, the input
voltage value is changed dynamically to meet the
requirement of secondary output power. Hence, an output
voltage-stabilizing control strategy based on the Back
Propagation (BP) neural network 18 proposed. Its core
mechanism is as follows: When the voltage-stabilizing U,,;
is set, error rate and error change rate are collect by
comparing detected practical output voltage
referenced voltage as sample data to input mto the neural
network control. Meanwhile, the system is driven by the
variation module of duty cycles whose output power
switches are transformed as a controller. Consequently, a
closed loop control system is formed to dynamically
stabilize the output voltage on the condition of parameter
distwrbance and lead step. The control configuration is
shown in Fig. 3.

and

BP NEURAL NETWORK MODEL

The BP neural network 1s a multi-layered feedforward
network with unidirectional propagation (Eriki and
Udegbunam, 2008; Hsieh, 2010). Tt is the core of forward
networks and the essence of artificial neural networks. It’s
named as the BP neural network, for it uses the errors
back propagation algorithm which modifies the
connection weights and thresholds of each output and
input layers to reduce the difference between target
output and practical output. The BP neural network 1s
made of an mput layer, a single or multiple lidden layers
and an output layer. There is no connection among
neurons at the same layers but newons from different
layers are connected with their next layer. According to
the approximation theory of neural network, mn the case of
reasonable hidden neuron numbers, any nonlinear
complex function with limited discontinuous points can be
approximated at an arbitrary precision. As a nonlinear
modeling method, it has favorable fitting precision,
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Input layer ~ Hidden layer

Output layer

Fig. 4. Structure of a generalized three-layered BP neural
network

nonlinear quality and generalization ability (Abdalla and
Deris, 2005; Dutta et ai., 2012).

A generalized three-layered feedforward network 1s
shown in Fig. 4. This network mcludes neurons like ‘n’ as
the input layer, ‘p’ as the hidden layer, and ‘g’ as the
output layer.

Assuming the mput vector of neural 15 X = [x,
X5. .. %%, and the cutput vector 18 Y = [¥y,... Y- ¥4 |-
As the selection of excitation fimetion through the
hidden layer to the output layer has significant influence
on the network performance and learning speed S-type
activation function is used in the current model due to 1t
resembles to the input-output features of human brain and
thus has ideal bionic effects. As shown in Fig. 4, module
g is the S-type activation function and the first floor has
no activation function. Taking the output neuron m as an
example to show how this neural network works.
Assuming its mput weight 15 Wy,, and its value 1s
calculated based on the signal g, from Neuron 1. The
square of the difference e, between the practical output y,,
and the target value D, 1s defined as the index function of
this neural network algorithm, as shown in Eq. 5:

(Dp-va ) 5

Based on gradient descent, the modifier formula of

weight coefficient between output layer node m and
hidden layer node 1 is shown below:

(6)

where, 10 is the learning rate and usually remains at a
small constant value. Then the online adjustment law of
network weights can be obtained by:
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=n(D, -v,

where, S-type excitation function is shown in Eq. 8:

1 o e—Zn

1+e

f(n) = tanhn = (&)

-2n

The signal S ; 13 determined by all signals from input
to the neuron m, as shown in Eq. 9:

P
Sz = Ewm 3812 )
11

The online network weight adjustment is shown in
Eq 10:

Wins(K) =W, (k-1 + AW,
= lm.S(k —1)+231'](Dm - ym)ym (1 - Ym)gu

10)

where, k 1s the iteration times.

So far, it has been shown that the BP algorithm is a
kind of static optimization learning algorithm with gradient
descent, which modifies the weights in the opposite
direction of the gradient of ervor performance function
without consideration of accumulation of previous
experiences. Hence, the BP algorithm has some defects.
For example, if parameters are not set properly, the neural
network may oscillate during the tramning process, and
slow down error elimination, or make the system sank into
local extremum. Therefore, to improve the standard BP
algorithm, this paper uses the momentum BP algorithm
instead. This algorithm can decrease modification value to
moving towards the
convergence direction in case over-modification happens
during the training process. Besides, the momentum of BP
algorithm usually speeds up the modification at the same
gradient direction (Mao et al., 2007; Chen et al., 2010).
When adjusting weights with the BP algonthm,
momentum factor increases so as to filter out the high
frequency oscillation generated during the tramng
process, thus traming time 1s shortened, but the learning
rate and astringency 1s improved. The regulation formula
1s showninEq. 11:

ensure that modification is
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W(K) =Wk ~Dnll-o)D(k ~D+aD(k 2] (17,
D(k) = -3l / w(k), 0<a<l

|

where, w(k) is connection weight vector, D(k) is the
negative gradient at k time, and a 1s the momentum factor.
As the added momentum term is equivalent to the
damping term, the tendency to oscillate will decrease
during the learning process.

DESIGN OF THE BP NEURAL NETWORK
CONTROLLER

A three-layered feedforward neural network is
designed n this section, where the input layer has two
neurons, corresponding to the voltage error e and its
change rate e, of the pickup coil; the output layer has one
neuron, corresponding to the change rate of duty cyele.
The amount of hidden layers and their neuron influence
the approximation of the network.
Nevertheless, the more hidden layers and hidden neurons,

functional

the longer the traming time and the lower fault tolerance.
Thus, the value function evaluating the BP neural network
performance may not be optimal unless the number of
hidden neurons 15 calculated based on the empirical
formula:

n,=n +n +x

where n, is the number of input neurons, n, is the number
of output neurons, and k 1s the random integer from [1,10].
Thus, the number of hidden neurens should be himited to
[2, 12]. To find the optimal number of hidden neurons, a
BP network with variable numbers of hidden neurons 1s
designed, then the error size with experiments is
compared, and ten 1s found as the optimal number. The
vector of the outputs of each neural node in the hidden
layers is defined as [O, O,,..., Oy, |, while the output of BP
network 18 defined as O,;. The hyperbolic tangent S-type
function is used to as the excitation function for the input
layer to ludden layers, while “tansig” and linear excitation
function “purelin” is used for hidden layers to the output
layer. The learmng rate 1s set to 0.05, maximum traming
times 18 500 and target error 1s 0.000001. The output vector
of hidden layers is shown in Eq. 12:

03 Wl:i W23 b3

O —tann | e Ve T} o (12)
cC z

o W W b

12 1z a1z
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The output vector of network is shown in Eq. 13:

95

) o
0y =purelin 4 [w, , W, W] :4 by, (13)

012

As it has shown above, when the value of the input
vector is known, the practical output of the network can
be figured out based on the adjustment law of weight
coefficients.

Therefore, this paper uses the MATLAB neural
network toolbox function to establish an untrained three-
layer BP neural network, and construct input (e and e,)
training sample set and output (Ad) target set based on
the simulation results of the ICPT system. The selected
training function is the momentum BP algorithm
(Traingdm). The selected weight adjustment law is the
gradient descent learning function with momentum
(Learngdm). The number of training time is set and then
the BP network 1s tramed off-line. The value function 1s
used to evaluate whether the neural network training is
optimal or not The Mean Square Error (MSE) of the
performance function 1s selected as the value function to
evaluate the network’s performance. The MSE curve
during training is shown in Fig. 5.

Figure 5 demonstrates that MSE curve meets the
requirement of target error m the 54th iteration and the
designed neural network has fast convergence which
approximates for the complex nonlinear functional
relations of mput and output with certan degree of
precision.

ANALYSIS OF SIMULATION RESULT
In the MATLAB simulation environment, the

simulation circuit in Fig. 6 was established according to
the control structure in Fig. 3. The effect of voltage-
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Fig. 7: Output voltage under load disturbance

stabilizing control on the condition of input disturbance
and load change will be discussed.

The system detected the secondary output voltage in
real-time and compared it with the reference voltage to get
the error and its change rate as the input sample data for
the neural network controller. Meanwhile, the output of
the neural network had been in duty cycle variation and
served as the duty cycle of Buck circuit to regulate
voltage. Hence, the Buck circuit adjusted the trans
formation link and then the input voltage of the ICPT
the simulation

system. Table 1 shows

values.

parameter

The system started simulation from the steady state,
with the simulation time being 0.02 sec, the expected
voltage-stabilizing being 50 V. The load value was
changed from 30 to 20 Q att = 0.01 sec. Figure 7 shows
the simulation waveforms of the neural network controller
under load disturbance, where the output voltage of the
ICPT system becomes steady after an overshoot of
0.003 sec and the voltage stays within the range of
0.4V during the adjustment process. The nether
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Table 1: Simulation parameters of the ICPT system

Parameter Value
Input voltage Eq. (V) 200
Filter inductance Ty (uH) 50
Primary capacitor Cy, (UF) 1.06
Primary inductance L, (uH) 324
1 capacitor Cyy, Cya (UF) 1.0
m inductance T, (pH) 31.6
Mutual inductance M (uH) 10
Secondary capacitor C; (UF) 1.03
Secondary inductance L, (uH) 324

region in Fig. 7 demonstrates the voltage-stabilizing
performance waveform during 0.01~0.02 sec after load
change when the overshoot has been within the range of
£l V during the short adjustment process. When load
changes, the controller has restrain voltage fluctuation
effectively within the overall voltage-stabilizing range,
showing good control performance and satisfying the
requirement of control accuracy.

When an ICPT system is under operation, it will meet
disturbance from the input source. To verify the inhibitory
action of the newral network controller under input
disturbance, a 50 V DC disturbance was added to the dc
source at t = 0.01 sec. Figure 8 shows the simulation
waveform of output voltage. When the system was under
mput disturbance, the output voltage waveform became
steady after an overshoot of 0.004 sec with the help of the
neural network controller. The overshoot is small and the
waveform is quickly stabilized. Besides, the system had
fast response speed and kept amplitude of voltage error
within the range of +0.6 V at the steady state. Hence, the
neural network controller meet the requirement of
accurately stabilize the output voltage.

These sunulation results have proven that the neural
network controller can effectively help the ICPT system to
resist load change and input disturbance, showing small
overshoot and strong adjustment performance and
robustness of the output voltage-stabilizing curves. Thus,
1t 1s feasible to use the topology of the system and the
neural network controller.

EXPERIMENTAL DEMONSTRATION

Based on Fig. 6, an experimental ICPT system with
neural network controller was built, as shown in Fig. 9.

The Buck circuit was used as the regulator to control
the mput voltage B, with the value of filter mductance L,
being 5 mH, the value of output capacitor C, 100 uF and
the chopping frequency 20 kHz. The control circuit
detected the secondary resonant voltage U, and coupled
back to the neural network controller via RF-Lmk. To
facilitate the discrete data processing with DSP, the neural
network controller was discretized. The TMS320F2812
was used as the main control unit to compute error, realize
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Fig. 8 Output voltage under mput disturbance
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Fig. 9: Block diagram of experiment system
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Fig. 10: Experiment waveforms when load jumped from
35-200Q

the neural network algorithm and calculate the duty cycle.
The PWM signal was used to control the Buck circuit to
adjust the output voltage.

To go a step further and validate the effect of neural
network controller, two groups of load change was set n
the experiment, mcluding a resistance load transformed
from 35-20 Q and one transformed from 20-35 Q. The
expected output voltage of experiment system was
assumed to be 13 V, while the input voltage E;, was 30 V.
The waveforms of output voltage of load u,, control input
voltage E, and the primary current i, are shown in
Fig. 10and 11.
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Fig. 11: Experiment waveforms when load jumped from
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In Fig. 10, the secondary output voltage has been
stabilized within 30 msec EC after an overshoot of 4 V due
to the load change, that is to say, the overshoot is about
30%. InFig. 11, the secondary output voltage reaches the
given target state within 28 msec after an overshoot
3.6 V due to the load change, that 1s to say, the overshoot
15 about 28%. These two experiments demonstrate that
when the system 1s under load disturbance, its secondary
output voltage can be stabilized by this neural network
controller with good control accuracy and robustness.
Figure 10 and 11 also show that when the load becomes
smaller, the primary input voltage E, and the primary
resonance current i, become higher. However, when the
load becomes bigger, the primary input voltage B, and
primary resonance current i, will step down. These
changes are caused by the vanation of reflected
umpedance.

Moreover, as shown in Fig. 10 and 11, there are
ripples in the waveforms of the secondary output voltage
u, and the control input voltage E,. These ripples are
caused by the mput current disturbance due to the high
frequency switching of the primary Buck circuit and
inverter. Some measures can be taken to minify these
ripples, such as filtering inductor and/or capacitor
optimization and switching frequency optimization.

CONCLUSIONS

This research studies the output voltage-stabilizing
strategy for the TCPT system. As it is difficult to
accurately model and effectively control the ICPT system
due to its higher-order switch nonlinear behaviors, a
neural network-based control strategy has been
proposed. Compared with traditional models, the neural
network has the feature of approximating complex
nonlinear function. A feedforward neural network based
on the BP algorithm has been designed. This neural
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network serves as the controller of the ICPT system to
stabilize the output voltage. Based on the simulation
analysis, it can be concluded that the proposed neural
network controller can effectively and rapidly stabilize the
output voltage which only shows small overshoot. This
controller is not only accurate but also feasible. Tt can
stabilize the output voltage even under parameter
disturbance and load disturbance due to the self-learning
ability and robustness. Furthermore, the load change
experiments have verified that this neural network-based
control strategy has great control effect and strong
flexibility.
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