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Abstract: A non-sub sampled Contour let coefficient compressive sensing based on mfrared and visible inage
fusion method was proposed to solve the problem that the infrared light sensor and the visible light sensor was

failed to get clear images simultaneously in this study. Firstly, the multiscale and multi-directional image
decomposition for the infrared and visible image was preformed by using the non-sub sampled Contourlet
transformation and then the non-subsampled Contowrlet coefficients of them were obtained. Secondly, the
Low-frequency coefficients of the infrared and visible images was fused by the weighted average fusion method

and the band-pass sub-band coefficients was fused by the pseudo-random Fourier matrix observations weights
fusion method; Thirdly, the coefficient reconstruction for the fused band-pass sub-band coefficients was
carried out. Fally, the image was reconstructed by the inverse non-subsampled Contourlet transformation.
The experiment results showed that this fusion algorithm was failed to get image with clear object and
background and it had the low computational complexity and good fusion effect.
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INTRODUCTION

Image fusion uses the different imaging modes of
multi-sensor to provide complementary mformation and
increase the amount of the image information for the
further processing. Tt has been widely used in areas such
as machine vision, geographic mformation system and
biomedical engineering etc. The visible light and the
infrared light have the different imaging mechanism, the
former 1s 1imaged by the spectral reflectance and the latter
is imaged by the thermal radiation. Therefore, the visible
light mmages wusually have abundant background
information which can describe the environment in the
scene better and the infrared image can clearly describe
the existence of the target. The identification ability for
the target and the interpretation ability for the
environment are improved by the fusion of the visible
light image and the infrared light image based on the
complementary nature of the two kinds of images
(Liet al., 2009).

Because of the limitation of the wavelet theory,
several new multi-scale analysis methods have been
proposed over the past decade such as rideglet
transformation (Candes, 1998), curvelets transformation
(Starck et al, 2002), Contourlet Transformation (CT)
(Do and Vetterli, 2005), Non-subsampled Contourlet
Transformation (NSCT) (Da Cunha ef al., 2006), wave

atoms transformation (Demanet and Ying, 2007), shearlets
transformation (Easley et al., 2008) etc. Compared with the
traditional wavelet transformation theory, these methods
have the characteristics of multi-scale, time-frequency
localization, multi-direction and anisotropy. By these
methods, the image can effectively show its high
singularity and fully express its structural information. At
home and abroad, a considerable amount of researches
have been done in the area of the multi-scale fusion
(Lietal., 2009).

Zhang and Guo (2007) proposed a visible light image
and infrared image fusion method that different rules were
used on the separated NSCT coefficients. Fu and Zhao
(2009) mentioned a novel image fusion algorithm based on
the second generation curve let transform by the physical
characteristics of nfrared and visible mmaging sensors.
Firstly, the fast discrete curvelet transform was performed
on the original images respectively to obtain the sub-band
coefficients at different scales and m various directions.
Then for low frequency sub-band coefficients, the fusion
weights were determined by the target characteristics of
infrared image and the detail information of visible image;
while for high frequency sub-band coefficients, a fusion
rule based on local region energy matching was
employed. JTingchao and Shiru (2011) improved a visible
light image and infrared image fusion method based on
the Curvelet transformation and the adaptive PCNN. They
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fused the two types of image by conducting the weighted
averages of their low-frequency sub-band coefficients.
Then they selected their high frequency coefficients as
the wmputs to PCNN by usmg its global coupling
characteristics and pulsed synchronization characteristics
and also selected regional energy measurements as the
comnection strengths of PCNN. They got respectable
results.

With the development of the information technology,
the traditional image fusion methods have to process
large amount of data than ever. So the requirement for the
signal sampling, transmission and storage has been put
mto a gher level. A most vital and urgently solved
problem is how to relieve this press, while effectively
abstract the available information from the signals. The
Compressive sensing theory proposed by Donoho
(2006) and Candes and Wakin (2008) offered an effective
way to solve this problem.

It 18 well known that the traditional digital signal
processing frame is on the basis of the Nyquist sampling
theorem. That 1s, in order to recover the original
continuous signal from the discrete time signal sampled
from the continuous signal, the sampling frequency must
be greater than twice the signal bandwidth. And the
Compressive sensing is a new way to convert the analogy
signals mto digital forms economically. It need not
completely sample the signal and it needs not any priori
the sampling. Therefore, the
Compressive sensing greatly reduces the cost and

information before

complexity of the image acquisition system and decreases
the image storage space and transmission cost
(Donoho, 2006; Candes and Wakin, 2008). At present, the
researchers have been done a great deal of studies on the
compressed sensing in different areas. But very few
research has been done on the area that applying the
compressed sensing theory to the

image fusion.

Wan et al. (2008) firstly did image fusion by the
compressed sensing but the author used the fusion rule
by computing the weighted standard deviation of the
image observation. The fusion effect was not so
remarkable. And the convergence rate of the algorithm is
slow.

This study proposed a novel method that using the
non-subsampled contourlet (NSCT) based compressed
sensing algorithm to do image fusion. The experiment
results show that this algorithm can effectively improves
the convergence rate, decreases the amount of processing
data and raises the fusion effect.

The basic theory of the compressed sensing: The
compressed sensing is a non-adaptive, nonlinear
reconstruction sparse signal method, the main 1dea of the
aforementioned method is that realizing the sample and
compress by projecting the N dimensional signal to the
measurement matrnx and then obtaming the M dimensional
observation vector. The process is shown in Fig. 1. The
reconstruction process 1s the approximately accurate
reconstruction of the original signals by using the
optimization algorithm in the signal sparse decomposition
instead of the simple linear calculation.

In order to simplify the problem, assume that the
discrete real signal can be shown as the Eq. 1 and the
sparsely K is under consideration:

xeR™, [[Px|,=K<N 4}
where, N 1s the signal length, ||.||; 13 the zero norm of the
signal, that is the nmumber of the signal value which is not
equal to 0. ¥ is the sparse base of the signal, the m times
measuring of which is:

y=ax 2

Recover#y

Fig. 1: The sample and recovery of the compressed sensing, 1-7: Show the steps of procedure
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where, ®eR™" is the measurement matrix which is not
relevant with ¥ and m<N. Assume that the observation
vector y and the measurement matrix @ are known and @
satisfy the Restricted Isometry Property (RIP), the
optimization algorithm with the zero norms can be used to
reconstruct or approach the original signals:

argmin || ¥x||g, st y=dx (3
NSCT filters: The NSCT has all the characteristics of the
traditional Contourlet transformation. It also has the
feature of the translation invariance which can effectively
reduce the influence the 1mage registration error on the
fusion performance (Zhang and Guo, 2008). In addition,
the image decomposed by the NSCT has the same size
with the original image which can easily get the
correspondences among them. The fusion rule can be
quickly determined by these correspondences. Therefore,
NSCT is suitable for the image fusion.

Similar to the Contourlet transformation, the scale
decomposition and the direction decomposition can be
done separately in the NSCT. Firstly, the Non-subsampled
Pyramid Filter Bank (NSPFB) was used to do multi-scale
decomposition on the image. Then, the Non-subsampled
Directional Filter Bank (NSDFB) was used to do direction
decomposition on the multi-scale sub-band 1mage and the
subband coefficients in different direction and scale 1s
obtained consequently.

The NSPFB mainly consists of the decomposition
filter {Hy(2), H,(2)} and the synthesis filter {G(z), G,(2)}
and the Bezout identical equation 1s satisfied. The
decomposed construction of the NSPFB is shown in
Fig. 2.

The NSPFB filter with k level decompositions 1s used
to get kt1 sub-band images with the same size as the
original image:

Hy(z) Go(z)+H (2) Gy(z) = 1 (4)

For the sub-band image in certain scale, the NSPFB
filter with the [ level decompositions is used to get 2/
sub-band 1mages with the same size as the original image:

U(z) Vi(zHUi(2) Vi(z) =1 (3

The decomposed construction of the NSPFB is
shown in Fig. 3.

The  multi-scale  decomposition the
multidirectional decomposition on the signals can be
preformed by the combined use of the NSPFB and the
NSDFB.

and
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Fig. 3: The analysis part of NSDFB

The fusion method based on compressed sensing: The
low and high frequency coefficients can be obtained by
the NSFB decomposition. The high frequency coefficients
are the sparse signals,
coefficients are the approximation signals with low
sparsely. If they multiply together with the observation
matrix, the correlation among the coefficients of the low
frequency components would be broken and the
reconstruction effect would be degraded. Thus, the low

while the low frequency

and high frequency sub-band is processed separately to
get the better construction effect.

SELECTION METHOD FOR THE LOW FREQUENCY
SUB-BAND COEFFICIENT

The low frequency sub-band coefficients which
contain the main energy of the image can be fused directly
for its low sparsely. By the simple average method, the
image contrast ratio would be degraded.
Furthermore, the effect would be much worse because of
the opposite polarity in certain area in the infrared ray and

fusion

visible light region. In this study, the weighted average
coefficients based on the infrared ray and visible Light
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physical properties is used to fuse the low frequency
sub-band coefficient, the fused coefficients <7 (k, k;) are
shown as follows:

l = C;;" (kl’k2)w‘—v (kl’k2)+cﬁ (kl’kz)wm (k1=k2) 6
C; (k1>k2)_ le(kpkz)*“’m (khkz) ( )
Where, WI_v(kl:- kz): WIR(kb kz) are defined as follows:
Wy (k) = (i )| (14 0, (i, ) ™
: max( - (k, k, )\f(l +o, (k.k, )))
C® (K, K, )= Oy (koK ) (14 6y (K, K,
wir (ky k)= A ) ( ) ( ( )) (8)

max( CF (K, ky )= G (k)

{1464 (kl,kE)))

where, C,(k,, k;) and o(k,, k,) denote the mean and
standard deviation of the coefficients in NSFT field.

SELECTION METHODS FOR THE BAND-PASS
DIRECTION SUB-BAND COEFFICIENTS

The observation of the high frequency sub-band
coefficients: The high frequency sub-band coefficients
can be considered as sparse and can be observed by the
Compressed Sensing. The decomposed low frequency
coefficients have weak sparseness, that 1s, there 1s
significant correlation among these coefficients. In order
to better construct the image contour and hold the image
energy information, the tower filter take one layer
decomposition and the direction decomposition of 3
levels. Then the direction sub-band number of the high
frequency sub-band is 2°= 8 The high frequency
sub-band coefficients C*, , and C*y z{w =1, 2, 3,..., 8) of
the mfrared ray and visible light with the size of are lined
as 8 column vectors, respectively, the size of each column
vectors is (N/9)x1. Then these 8 sub-band coefficients
in high frequency direction calculated by
Pseudo-random Fourier matrix. The sub-band coefficients
column vector observations Z;” are obtained, the sizes of
which are. They are denoted as follows:

are

L =@ CP )

For the NSCT, the larger of the decomposed high
frequency sub-band coefficient value, the more of the
mformation contained in the image. Because the
observation process for the compressed sensing the
image signal is linear, thus the relationship among
observations can be considered as a linear relationship.
So the larger of the observation value, the more of the
mformation contamned in the image. The obvious image
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characteristics such as straight line, curve, contour, area
etc are usually denoted as the variation of gradation in the
original image. However, the image characteristics are
denoted as the high frequency sub-band transformation
coefficients with large scale in the multi-scale transform
domain. Although, the observations transformed from the
high frequency coefficients still remain their linear
relationship, there
observation matrix and the NSCT transform domam. Thus,
the fusion rules could not be chosen by the relationship
among the pixels and the NSCT coefficients. In this study,
the weighted fusion method is adopted according to the
linear relationship among the observations.

Firstly, the weighted fusion of the visible light image
is supposed as follows:

13 no correlation between the

e (10)
22| +|8)
The weighted fusion of the infrared images is:
wo =1-w° (11
The ligh frequency sub-band coefficients

observations was observed after the weighted fusion on
sub-band coefficients n 8 high frequency directions of
the visual light images and infrared images. The results
are shown as follows:

70 = w1z w2 (12)
where, z.°, 2°; are the coefficient observations in 8 high
frequency directions of the visual light images and the
infrared images respectively. While, w.*, w*; are the
weighted fusion values mn the corresponding directions.
Z* 18 the fused lugh frequency sub-band observations.

The reconstruction of the high frequency sub-band
coefficients: The key of the high frequency sub-band

observations  construction  algorithm  is  solving
optimization problems:
i - 13
IE;QE‘LPXLST.CPX ¥ ( )

where, ¥ 15 sparse transform matrix (the NSDFB filter
matrix in NSCT transformation is selected in this study),
x 18 the sparse form of the signals, @ 15 the observation
matrix, y 1s the observation value. This is a real 1sotropic
Total Variation (TV) model.

According to the study (Nocedal and Wright, 2006),
the algorithm in this study used the method of Lagrange
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Multipliers to solve the augmented Lagrange function.
The basic algorithm 1s shown as follows:

While “do not converge” Do

Approach the minimum of the augmented Tagrangian fimction by the
Alternating Direction method.

Update the multipliers

End Do

Replacing ||.|; by ||.|| to simplify the calculation, then the
TV model is equivalent to the Eq. 14:
EH(&)IH,S.L(DX =y&¥x=0 (1 4)

min
meR! xeRY

The corresponding augmented Lagrange problem is:

tlljxnzl‘l[uwiﬂfviT(‘I-’x7(u))+%”‘1-’x7(u)”2jfﬂ (@x-v)1Ejox -y (15)

The alternating minimization method 1s used to solve
Eq. 13. For a fixed x, the optimal value w, in all i is obtained
by solving the Eq. 16:
,1,0}
P

Suppose Gtand {1} are the approximate solutions of
Eq. 13, the multpliers of which are updated by the
Eq. 17. All of i satisfy the Eq. 17

Vl

B

wE-v /P

YEmwb (16)
iz — v, £

X

Vv B, R0, e A-(A ) an

Furthermore, the reconstructed high frequency
direction sub-band coefficients can be obtamed by
combining the algorithm in study (Nocedal and
Wright, 2006).

RECONSTRUCTION OF NSFT

The NSFB high frequency direction sub-band
coefficients C®w = 1,2,3,..., 8) are obtained by the
reconstruction of the fused observations. The low
frequency sub-band coefficients of the fused visual light
images and mfrared images and the sub-band coefficients
in 8 high frequency directions are in the column vector
forms. Translating them into the matrix forms of
(N/3)>x(N/3) and then combining them into a coefficient
matrix with the size of NxN. The resulting images of the
fused visual light images and infrared images are obtained
by the reconstruction of the mverse NSCT transformation.

EXPERIMENT RESULTS AND ANALYSIS

In this algonthm, the Pseudo random Fourier matrix is
used to do compressed sensing sampling, As shown
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Fig. 4(a-b): Observation matrix (a) Fourier sampling model
and (b) 2D probability density function

in Fig. 4. The pseudo random down-sampling 1s the
polynomial variable density random sampling. Tt subject
to the probability density function that doing intensive
sampling in low frequency signal and sparse sampling in
high frequency signal. This can greatly reduce the
computational complexity.

In order to verify the effectiveness and correctness of
the algorithm, two groups of visual light images and
infrared images are chosen to do the fusion experiment.
The 1images adopted n the experiment were the Equinox
faces and the Octec. The computer in the experiment used
the Windows XP operating system, Pentium(R) Dual-Core
E5400@ 2.70 GHz, 2.69 GHz CPU, 2 G memory. The
programming platform was the MATLAB7.0.1. In the
fusion experiment, this algorithm is compared with the LP
{(Laplacian Pyramid) method, the NSCT method and the
CS-SD method. Where, the LP method used 3 layers
decomposition, the high frequency took the maximum
value and the low frequency took the average value. The
NSFT method adopted the Parameter set standard
mentioned in study (Zhang and Guo, 2008), by the 3 layer
image decomposition. The decomposition levels used
from the coarsest scale to the finest scale are 2, 3 and 3.
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Fig. 5(a-f): The contrast of several methods (a) Visible image, (b) Infrared image, (¢) Method of LP, (d) Method of NSCT,

(&) Method of CS-SD and (f) Present approach

The "maxflat" filter was adopted as the scale
decomposition filter and the "dmaxflat" filter was adopted
as the direction decomposition filter. The sampling rate
was chosen as 0.3 in the CS-SD method according to
study (L1, 2011). In thus algorithm, the sampling rate was
0.15. The data used in the image recovery are 30% of the
total image data. The filter used in our algorithm was same
as the study (Zhang and Guo, 2008).

Figure 5 shows the fused images of the Equinox
faces. Figure 5a 1s the visible ight image. Figure 5b 1s the
infrared image. Figure 5c¢ is the fused result by the LP
method. In Fig. 3, there are ghosting, block fuzzy and
obvious detail loss. Figure 5d 15 the fused result by the
NSCT method. Compared with the CP method, the
ghosting and block fuzzy has been eliminated and the
clarity has been advanced. Tt shows the edge capture
capability. Figure 5e 1s the fused result by the CS-CD
method; its visual effect 1s obviously higher than the
former two images. Figure 5f is the fused result by the
algorithm in this study. Compared with the former three
umages, it has the highest contrast and the complete
contour. This method even obtained subtle details of the
umage.

Figure 6 is the fusion results of the Octec. Figure 6a
is the visible image. Figure 6b is the infrared image. The
results of these methods are shown in Fig. 6. In Fig. 6c,
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the result of the LP method is relatively blurred with much
distortion and low contrast In Fig. 6d, the result of the
NSCT has better effect than PL. method in certain spatial
details such as the preserving of the edge and the
removing of the virtual shadow. In the decomposition and
the reconstruction process, the down-sampling and
up-sampling is taken off in the NSCT method to avoid the
frequency aliasing effect. In Fig. 6e, the result of the
CS-SD has the higher contrast and clearer details. In
Fig. 6f, the algorithm 1n this study has smooth edges and
completely removes the virtual shadow.

Figure 7 shows the effects of the local area enlarged
images fused by all of the methods. Figure 7a 1s the fusion
result of PL, method. It has obvious ghost and blur.
Figure 7b is the fusion result of NSCT method in study
(Zhang and Guo, 2008). It has clear contour, better
preserved edges and hardly any ghost. Figure 7c¢ 1s the
result of CS-SD fusion method m study (L1, 2011). It
has more smooth edges, less distortion and higher
contrast. Figure 7d is the result of the method in this
study. It 15 obvious that the image better preserved the
edges and eliminated the edge shock. It has the best
visual effects of all the 5 methods. In order to better
analysis the fusion performance, the 5 algorithms is
evaluated by the methods in study (Zhang and Guo, 2008)
with the index of Information Entropy (IE), Average
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Fig. 6(a-f): The contrast of several methods (a) Visible image, (b) Infrared image, (¢) Method of LP, (d) Method of NSCT,

{(e) Method of C3-SD and (f) Present approach

(@)

Fig. 7(a-d). The fusion contrast of local region (a) Method of LP, (b) Method of NSCT, (¢) Method of CS-SD and (d)

Present approach

Gradient (AG), Mutual Information (MI), Edge retention
(Q) and computation time (T).The results are shown as
Table 1.

For all of the indexes, the algorithm n this study has
the lughest levels except the MI. The MI of this algorithm
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15 a little lower than that of the NSCT method. It 1s shown
that the fusion method in this study has better
information acquisition performance and detail expression
performance. In the mdex of computation tume, this
algorithm costs far lower tune than the NSCT and
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Table 1: Evaluation criterion of fusion results

Methods Information entropy

Average gradient

Mutual information  Q(Edge retention) T/s (computationtime)

Laplacian pyramid 5.88
Non-subsampled contourlet transtformation 6.54
CS-CD (Compressed sensing) 6.76
This study 6.82

0.007 1.86 0.31 1
0.013 248 0.39 126
0.017 243 0.41 59
0.018 2.36 0.44 16

CS-MAYV fusion method. In a word, the algorithm m this
study has low computational complexity and good fusion
effect.

CONCLUSION

The compressed sensing theory is applied to the
mmage fusion m this study. Compared with the tradition
fusion method, the hypothesis of the prior1 mformation 1s
not necessary in this algorithm. Furthermore, the image
data are reduced after the observation and the
computational complexity is reduced effectively. In the
choice of the transform domain, the NSCT used m this
algorithm has the translational mvariance which can lower
the matching and fusion error influence on the fusion
performance and easily get the corresponding relationship
among sub-bands which benefits to the set of the fusion
rules. The experiment results show that the NSCT
transform domain based Compressed Sensing has good
effect on image fusion. In deed, the applications of the
Compressed Sensing in image fusion are still at the
exploration stage. It has huge potentiality mn the image
fusion with the development of the Compressed Sensing
theory.
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