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Abstract: In this study, a branch and bound algorithm 15 presented for globally solving a class of linear
fractional programming problems. In the algorithm, a linear relaxation method is introduced to generate the linear
relaxation programming problem of the investigated linear fractional programming problems. In this study, we
pay more attention to the numerical experiments. Several test problems are used to verify the feasibility and
computational efficiency of the proposed branch and bound algorithm.
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INTRODUCTION

In this study, we consider the same linear fractional
programming problem investigated in (Feng et al., 2011):

i 3
(LFP): {mm {6, (5).£;9.. 8,00}
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The Lmear Fractional Programming problem (LFP)
has broad applications in measuring the efficiency or
productivity of system, the design of electronic circuits
{(Schaible and Shi, 2003), production planning (Schaible,
1995), portfolio optimization (Sekitani et al., 1995) and so
on. But to our knowledge, since the problem (LFP) is
nonconvex, there exist various local optimal solutions
which are not global optimal solutions. Therefore, the
problem (LFP) is very difficult to be solved.

In last years, several algorithms have been presented
for solving the Linear Fractional Programming problem
(LFP) with assumption that the denominator and
numerator of each ratio are all positive linear affine
functions (Ahmad and Husain, 2006; Phuong and Tuy,
2003). But to ow knowledge, less work has been still
developed to globally solve the Linear Fractional
Programming problem (I.LFP) investigated in this article.

Recently, a new linearization method 1s proposed for
solving the problem (LFP) in (Feng et al., 2011), based on
the new linearization technique, a branch and bound
algorithm 1s given and the convergence of the proposed
algorithm is discussed. In addition, we will pay more
attention to the numerical experiments of the algorithm.
The proposed algorithm is coded in C* program on
Intel(R) Core(TM)2 Duo CPU (1.58GHZ) microcomputer,
several test examples are used to venify the feasibility and
robustness of the proposed algorithm. And finally the
numerical experimental results show the proposed
algorithm is robust and effective.
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LINEAR RELAXATION PROGRAMMING

To solve the
Programming problem (LFP), first of all, for eachj=1,...,
p, we solve the following two linear programming
problems:

considered Linear Fractional

min x

st. Ax<hb,
and:

max X,

st. Ax<b.

So, that we can compute the initial upper

bound X" and the mitial lower bound x' of each
variable x, 1 = 1, 2,..., n and the imtial rectangle

X = {x|x! <x, <%, i=1,_,n}. CObviously, X’ contain the
feasible region of the problem (LFP).
Forall xexX=[x%]cX° define:
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Theorem 1: Feng et ol (2011). For all xeX for each
1=1,..., p, we can get the following conclusions:

* g0 g (0= (x)
¢+ Foreachj=1,..., p, the maximal errors of bounding

g,(x) using g5(x) and g"(x) satisfying:

limAL, =limV.)_ =0
w0 w—
Where:

w=lx-xl,
A, =max[e;(x)-g; (%))
Ve = max[g; (x) - g; ()]

Proof: Feng et al. (2011).

Obviously, by theorem 1 we get that, for each
j = 1, 2..... p. the linear function g"(x) will enough
approximate the function g,(x) as w—0.

Therefore, for v X* cX’, we can construct the linear
relaxation programming problem of the problem (LFP) in
X" as follows:

min max y
Lsjgp

8.t gj(x)gy,
Ax < b,

xe Xk

{LRP):

By the above construction method of the relaxation
linear programming, for v X* < X°, the problem LRP (3{*)
provides a valid lower bound for the optimal value of the

problem LFP (X5).

BRANCH AND BOUND AGLORITHM AND ITS
CONYERGENCE

The important step for the construction of a branch
and bound procedure for globally solving the problem
(LFP) 1s calculation of lower bounds for the iitial problem
and its sub-problems. A lower bound of the global
optimal wvalue of the problem (LFP) and its partitioned
sub-problems can be calculated by solving a series of
linear relaxation programming problems. Based on the
above proposed linear relaxation programming problem,
the problem (LRP) provides a valid lower bound for the
global optimal value of the problem (LFP) over the
rectangle X*.

The important condition for guarantee that the
proposed algorithm converges to the global optimal
solution of the problem (I.FP) is the selection of a suitable
partitioning operation. Here, we still choose standard
bisection method proposed in (Feng et al., 2011).

In the following, for convenience in expression, we
assume that LB(X*) be the global optimal value of the
problem LPR(X") and x* = x(X") be the global optimal
solution of the problem LPR(X"). Step of the proposed
algorithm is given as follows:

Step 0: Let the mitial convergence tolerance £ the initial
the number of iteration k: = 0, the mitial set of
active node £, = X', the initial upper bound
UB, = +e<;, the initial set of feasible points F: = o

Sclve the problem LRP(X") to obtain its
optimal value LB;: = (X") and optimal solution x":
= x(3{"), respectively. If x" is feasible to the
problem (LLFP), then we may update F and UB,, if
necessary.

If UB, LB, <e, then algorithm stops with x°
be the global optimization solution of the
problem (LFP). Otherwise, continue to step 1:
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Step 1: Let:

H(X) = max {gl(x)a gz(x)a' Tt gp(x)}
and UB, =min__ hix), if F: = o, then denote the
best known feasible solution by % =argmin . h{x}.

Step 2: Partition the selected rectangle X* into two new
sub-hyper-rectangles according to the above
proposed partitioning operation. Denote the set
of new partitioned sub-hyper-rectangles as 3*
For each w %" solve the problem PLR(X) to
obtain its optimal value LB(X) and optimal
solution x(X). If LR(X)>1TIB,, then let 1* %"\ x

Step 3: If LB(X)=UB, and x(X) 1s feasible to the problem
(LFP), then we may update UB,, F and b, if
necessary and let o _¢q \x)|JX*, update the
lower bound LB, =inf,_, LBZ)

Step 4: Set Q,,=0Q VX UB,-LBX)<eXe}. If
€),,, = o, then algorithm stops, UB, is the global
optimal value for the (LFP) and X is a global
optimization solution for problem (LFP);
Otherwise, let ki = k+1, select X* such that
X" —argmin,._, LB(X), X% = x(X"), return to step 1

Theorem 2: If the proposed algorithm terminates finitely

at iteration k, then a global e-optimal solution x* of the

problem (LFP) is obtained. Otherwise it must produce an
infinite sequence {x*} of iterations of which any limitation
point x* must be a global optimal solution of the problem

(LFP)and lim,_, UB, =lim,_ LB, =v wherev is the optimal

solution for the problem (LFP).

Proof: If the proposed algorithm stops finitely at iteration
k, then, when the algorithm stops, it can follow that
UB, = LB,. Hence, on the basis of the updating step of the
upper bound of the algorithm, we can follow that x* is the
optimal solution of the problem (LFP).

If the proposed algorithm does not stop finitely at
some stage k, then it will generate an infinite sequence
{X*}. Since, the used branching operation is exhaustive,
it is obvicus that the whole sequence {X"} must
converge to a singleton. On the basis of the updating
step of the upper bound and the lower bound for the
proposed algorithm, we get easily that {UB,} and {L.B,}
are non-increasing sequence and non-decreasing
sequence, respectively. Hence, we can get that {UB,-L.B,}
is a non-increasing sequence, by the conclusions of the
Theorem 1, it follows that the sequence {UB,-LB.}
converges to zero. Meanwhile, by the structure of the
branch and bound algorithim, we have LB, <v<UB, for all
k. Hence, we have lim,__ UB, =lim,_ LB, =v.

On the basis of the updating method of the upper
bound UB,, it follows that all x* cbtained at iteration k are
all feasible to the problem (LFP) and UB, = max {g,(x"),

gZ(Xk): B gp(xk)} .

Thus, the limitation x* of the sequence {x"} is
feasible to the problem (LFP) with the objective function
value v = maxig(x*), g,(x*),..., g(x*)}. Hence, the
conclusion of the theorem is concluded.

NUMERICAL EXPERTMENTS

To validate the feasibility and robustness of the
presented global optimization algorithm, some test
problems are implemented on Intel(R) Core(TM)2 Duo
CPU (1.58GHZ) microcomputer, the algorithm 1s coded in
C++, the simplex method is used to solve linear relaxation
programming problems and the convergence tolerance is
set to & = 5x107°. These test examples and their
computational results are given as follows.

Example 1:

minmax {g,{x),g; (%)}

st X +X,-%X,£1.2,
- X, +X,—X,£-09,
12x%, + 5%, +12x, <41,
12%, +12x, + 7x, <51,
—O6X, +X; +X;=-1,
1.0<x <12,
0.55<x, <065,
1.35< %, <145,

Where:

228 +23%, -%,+18
1.2%, —-x, +1.3x;

g1(x) =

32x, -x,+1.4x
B (x) = 8.3){11 + 4.22){2 - xz

Select the feasible error g; = 0.001, numerical results
are given as follows: the number of iteration is 207, the
maximal number of active nodes necessary 15 181, the
execution time in seconds t = 0.361621 sec, obtain the
optimal value V* = 1.504141260, the global optimization
solution 1s x*, = 1.0, x*, = 0.55, x*, = 1.45.

Example 2:

minmax {g, (x).g,(x).8,(x).8,(x)}
st. X +X,-X, =11
— X, +X,;—X; =05
12%, + 5%, +12x, <43,
12%, +12x%,+ 7x, 56,
—OX, + X, + X, 225,
1.0<x, 20,
0.5=x,<2.0,
0.5=<x,20.

6873



Inform. Technol. J., 12 (22): 6871-6876, 2013

Where:

I 44K, -X,+06

X)=
8(x) 2K, —X,+%X,+0.6
g, (%) = 4%, — X, +3x,+0.5
: 10x, + 5%, -x,+0.5
g (x)=5x1—x2+5x3+0.5
: 12%, + 6%, — X,
£, () = S5X, — X, +6%X,+0.5
4

12%, + 7%, -, +0.9

Select the feasible error g, = 0.005, numerical results
are given as follows: the number of iteration is 497, the
maximal number of active nodes necessary 360, the
execution tumne in seconds t = 1.03535 sec, obtam the
optimal value V* = 0.981545886, the global optimal
solution is x*, = 1.390625000, x*, = 0.5, x* =1.982309883.

Example 3:

minmax {g,(x),g,(x),8,(x).8,(x).8, (X}
st 2% +x,-%, <5,

- 2K + X, -2%,£-01,

11x, +6X, +12x, <46,

11x, +13x%, + 6x, < 53,

—TK + XK+ X, <1,

1.0=x, 20,

035<x,<09, 1.0<x, <1.55.

Where:
£ (x)= Ik, +4x,-x,+08
' 3%, X, +X, +0.8
g, (%) = 4%, - %, +3%,+ 06
! 9%, +9%, -%x;+ 0.6
£,(X) = 5K, — X, +5%,+06

12%, +6X,—-X,+ 0.6

g, (x) = 5K, - X, +6x,+0.5
13x, + 7%, -x, + 0.9

g, (%)= TH, — X, +T7X,+ 06
12%, + 6%, -x,+09

Select the feasible error g, = 0.001, numerical results
are given as follows: the munber of iteration 15 970, the
maximal number of active nodes necessary 773, the
execution time in seconds t = 2.18618 sec, obtain the
optimal value V* = 0.897576556, the global optimal
solution 1s x*, = 1.998046875, x*, = 0.35, x*, = 1.066406250.

Example 4:

minmax {g,(x),g,(x),g;(X).g,(x),g;(x)}
st 2%, +2x,-%, €3,

- 2% + X, -3%, -1,

1%, +7x, +12x, < 47,

13x, +13x, + 6%, < 56,

—6X, + 2K, + 3%, < -1,

1.0£x, 2.0, 035x, 0.9,

1.0<x, <1.55.

Where:

g, (%) = 6%, +4%, - X, +0.7
6X, — X, + 2%, +0.7
g, (%)= 9%, %, +4x%, +0.7

9%, +3x, -x,+07

£.(x)= 4%, — X, +6x,+0.8
1%, +7%,-%,+08

g, (x) = TR X, + 7%, +0.38
%, +9%, —x,+0.8

TX, — X, + 7%, +0.7
gs(K) = ———————
12%, + 7%, - %, +0.7

Select the feasible error g; = 0.001, numerical results
are given as follows: the number of iteration 1s 1183, the
maximal number of active nodes necessary 1056, the
execution time in seconds t = 2.63849 sec, obtain the
optimal value V* = 1.124582064, the global optimal
solution is x*, = 1.311523438, x*, = 0.865625000,
x*; = 1.034375000.

Example 5:

minmax {g, (x).g; (x), 8;(x).2.(x), g, (x}}
st 22X+ 2k, X, 22,

—2X, + X, - 3%, £-05,

1%, + 7%, +12x%, £ 45,

13x, +13x%, + 60X, <54,

—6X, + 2%, + 3x, <1,

1.0<x 2.0, 035<x,<09,

1.0=x, <1.55.

Where:

6%, +3x,-%,+0.7
X, —0.5%, + 2%, + 0.7

g (x)= G
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2, (%) = 8x,—x, +4x,+07
8%, +3x, —x, +0.7

5K, - X, +06x,+08
g ()=
12%, +7%, -%,+ 0.8

8, - X, +7x,+08
gx) = ————
10x, +9%, -x, +0.8

g,(x) = TR - X, +7X,+ 0.6
1%, +7%, -%, +06

Select the feasible error g, = 0.001, numerical results
are given as follows: the number of iteration is 273, the
maximal number of active nodes necessary 213, the
execution time in seconds t = 0.63138 sec, obtain the
optimal value V* = 1.281956612, the global optimal
solution is x*, = 1.092708333, x*, = 0.865625000, x* ,=
1.275000000.

Example 6:

minmax {g, (x),g,{x),8,(x).g,x),g;x)}
st 2K +2XK,—-X; <2,

- 2%, +X,-3x,£-05,

11x, +7x, +12x, < 46,

13x, +13x, + 6x, < 58,

— 06X, + 2K, + 3%, < -1,

1.0<x 220, 035<x%, £0.9,

1.0<x; <1.55.

Where:

T, +3%,-%,+04
X, —0.5%,+2x,+04

g1(x): 7

o, (%) = 6X, — X, +4%,+ 006
6%, +3%, -%,+0.6

6X, - X, + 7%, +06
g =
1%, + 7%, - 2%, + 0.6

2,(x) = 6X, — X, +7X; + 0.6
X, +9%, - X, + 06

Sk, -X%, +7x,+0.7
g = —————
12%, + 7%, X, +0.6

Select the feasible error £; = 0.001, numerical results
are given as follows: the munber of iteration 1s 150, the
maximal number of active nodes necessary i1s 143, the
execution tiumne in seconds t = 0.381588 sec, obtam the
optimal value V* = 1.349330947, the global optimal
solution 1s x*, = 1.092708333, x*, = 0.8565625000,
x*; = 1.275000000.

Example 7:

minmax {g, (x),g; (x), 8(x). 8., (%), 85 ()}
st 2% +2X,-X%, <2,

— 2%, + X, - 3%, £-04,

11x, + 7%, +12x%, 50,

13x, +13x, + 6%, <59,

— 60X, + 2%, + 3%, £ -1,

1.0<x 221, 035<x, 208,

l.1<x, £1.55.

Where:

4%, +4x%, -x,+0.2
X, —05%, +2%,+0.2

g (x)= 1

g, (%)= 5%, X, + 4%, +04
S5x,+3%,-x,+04

g, (x) = 4%, - X, + 4%, +05
8x, +7X, —X,+05

g, (x) = 5% X, + 7%, +05
6%, +9x, -X,+0.6

g,(x) = A%, - X, +6X,+09
13, +8%, —x,+09

Select the feasible error g; = 0.001, numerical results
are given as follows: the number of iteration is 226, the
maximal number of active nodes necessary is 146, the
execution time in seconds t = 0.63138 sec, obtain the
optimal value V* = 1.523500353, the global optimal
solution is x*, = 1.048958333, x*, = 0.743750000,
x*; = 1.268750000.

Example 8:

minmax {g, (x).g; (x), 8;(x).2.(x), g, (x}}
st 2%+ 2%, -X; =1,

—2X +X, - 3%, £-03,

1%, + 7%, +12x%, £ 45,

13x, +13x%, + 6%, <50,

— 60X, + 2%, + 3%, £ -1,

1.0<x €12, 035<x, 0.7,

12<x, <1.55.

Where:

3K, +3x,-%,+08
X, -05%,+2x%,+08

£, (X) =

g, (x) = 5K, - X, +5%,+0.3
5%, +5%, —%,+03
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2, (x) = 5K, — X, +5%,+0.5
9%, + 6%, — %, +05

g, (x) = 6%, — X, +6X;+0.5
6%, +12%, -%,+ 06

g,(x) = 1%, — %, + 6%, +0.2
12x, +8x, -%x,+02

Select the feasible error g, = 0.001, numerical results
are given as follows: the number of iteration is 48, the
maximal number of active nodes necessary is 49, the
execution time in seconds t = 0.168447 sec, obtain the
optimal value V* = 1.646398127, the global optimal
solution is x*, = 1.116666667, x*, = 0.656250000,
x*, = 1.462500000.

Example 9:

minmax {g, (x),g,{x),8,(x).g,x),g;x)}
st 2%, +2x,-X%, <13,

- 2%, + 2%, - 3%, £-0.35,

12%, +7X, +12%, <46,

12x, +13x, + 6x, < 52,

—6X, + 2%, + 3K, =],

1.0<x <125,

035<x,07512<x, 155

Where:
2%, + 2%, -%,+06
X, —0.5%, +2%, +0.6

g1(x)= 2

6%, —1.1x,+5x,+02
gz(x):
6%, + 5%, -1.1x,+02

S -X,+52x,+06
9lx, +6lx, —%x,+0.5

s (X) =

6.2%, - %X, +63x,+055
6.1x +12.1x, —x, +0.65

g4 (X) =

11.1%, - X, +6.3%,+0.26
12.1%, +8.2%, - %, + 025

g;(x)=

Select the feasible error g, = 0.001, numerical results
are given as follows: the number of iteration is 39, the
maximal number of active nodes necessary 1s 38, the
execution tiumne in seconds t = 0.111753 sec, obtam the
optimal value V* = 1.668691804, the global optimal
solution 18 x*, = 1.097916667, x*, = 0.600000000,
x*, = 1.462500000.

Numerical results show that our algorithm can
globally solve the problem (LFP) on a microcomputer. By

the numerical results of the test examples 1-9, we can
follow that the proposed algorithm 1s competitive and can
be used to globally solve the problem (LFP).

CONCLUDING REMARKS

In this study, we present a numerical algorithm and
test examples for a class of linear fractional programming
problems which is investigated in recent literature
(Feng et al, 2011). Based on the known linearization
techmque proposed in recent literature (Feng et al., 2011),
a branch and bound algorithm is proposed and
implemented which is convergent to the global optimal
solution of the linear fractional programming problem
(LFP). Several test examples are used to verify the
feasibility and computational efficiency of the proposed
algorithm.
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