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Abstract: A grey-box modeling methodology using new basis functions 1s proposed for the reduction of
spatially distributed processes. The methodology amounts to find low-order substitute models for the
processes which can balance the dimension, computational efficiency and the accuracy. Model reduction is
pursued by time/space separation and projection on the set of new basis functions. Subsequently, an empirical
component 1s 1identified to substitute the nonlinear terms and un-modeled dynamics. As a consequence, a
grey-box model has been developed to approximate the spatially distributed processes. A numerical example
is used to demonstrate the effectiveness of the proposed method.
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INTRODUCTION

In industrial applications, many spatially distributed
processes are partially unknown, with model uncertainty
usually caused by incomplete system information or
simplification made at the first-principle modeling. A
mumber of grey-box models, also referred as the hybrid
models m the literature, have been proposed for the
industrial spatially distributed processes. The grey-box
modeling approaches seeks to combine the advantages of
the mechanistic models (first-principle) and black-box
models. All available knowledge of the process
mechamsms is used to construct a white-box part, while
un-modeled dynamic is approximated by identification
from the measwed input-output data. Psichogios and
Ungar (1992) proposed a serial structure where a
black-box is used to approximate unknown relations which
determine certain model variables. With the nonlinearities
can be identified using neural networks, Deng et al. (2005)
has developed a spectral based intelligent modeling
method for the modeling of a class of curing processes.
Furthermore, grey-box model of the block-structured type
(for example Wiener and Hammerstein models) by Pearson
and Pottmarn (2000) and developed by Qi et al. (2009),
Qi and Li (2009). Grey-box models have been widely
applied for the modeling of a variety of chemical and
biochemical processes. And also have been studied with
a focus on applications to control (Alaradi and Rohani,
2002) and identification (Brendel et al., 2004). Grey-box
type of models for any type of system which combines
linear and nonlinear terms often arises when complex

process systems are reduced and identified. Examples of
these type of systems are PDE systems with a nonlinear
convection term and a linear diffusion term or conversely,
a linear convection term and a nonlinear diffusion term.
In this note, a grey-box modeling methodology using new
basis functions is proposed the reduction of spatially
distributed processes. In fact, the dynamical information
of the excluded fast modes have been retained when the
new basis functions are constructed by transformation.
Model reduction is pursued by time/space seperation and
projection on the set of new basis functions. This
methodology amounts to find low-order substitute models
for the processes which can balance the computational
efficiency and the accuracy. Subsepuently, an empirical
component is identified to substitute the nonlinear terms
and un-modeled dynamics. A numerical example 13 used
to demonstrate the effectiveness of the proposed method.

THE NEW BASIS FUNCTIONS

Suppose that the spatially distributed processes, is
governed by a PDE with the following state description:

%:AX+BU+ F(X,U) (1)

subject to a mumber of boundary and initial
conditions. Here, X (z, t) denotes the vector of the
state variables at spatial position Z and at time t
U (z t) denotes the vector of mampulated spatio-temporal
input and only one spatial-dimension is considered. A
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whichand p which are two linear operators that involve
linear spatial derivatives on the state variable and input.
F whichrepresents the nominal nonlinear terms. Y (z, t)
whichis measured at spatial locations which is assumed to
be enough according to the process complexity, the
desired accuracy of modeling and control, physical and
cost consideration etc. Eq. 1 is considered on a bounded
spatial domain QeR* which. The phase space of (1) is some
infinite-dimensional Hilbert space A (Q) which of
sufficiently smooth functions from € whichinto real
numbers. A scalar product is introduced in A () which
which is usually given by:

[e.h] = f og (2h(z)dz (2)

for two arbitrary functions g, h € A which.

Considering the finite-dimensional subspace @©
whichspanned by the first N whichsmooth global spatial
orthogonal basis functions:

© = span{@,(z), @; (2)...., @x(2)} (3)

The spatio-temporal variable X, U, Y can be expanded
into a truncation series with corresponding temporal
coefficient o; (t), w (t), v; (t), respectively. The insertion
of the expansion and the application of a Galerkin method
vield a system of N which first-order ODE equations and
can be rewritten in a general form as follows:

o (t)=Ac (t+Bu tHf (e (), u (@) y (1) =Ca (t) (4

where, a{t)=[a, (t),a,(t). .a,()]" A denotes the matrix contains
the first N eigenvalues of the operator A; f denote
the nominal nonlinearity terms; and B=[b,b,, b ] and
b; =[by,b,. b, ] denote the spatial location information of
the mput.

Let each new spatial basis function be a linear
combination of eigenfunctions for nonlinear DPSs. Define
a basis function transform matrix R we have:

i¥(2), ¥ilz), .. ¥ (22} (3)
=19, (@), L2).... pu(2)} R

where, i, and @, denote new spatial basis functions and
eigenfunctions, respectively. Eq. 5 can be rewritten as
follows:

w (3= 2 R0, (2 (6)

Basis function transform matrix R can be obtained
from the linear part of PDEs. Let (A, B, C) be an N whichth
order stable state realization of corresponding Linear
Time- Invariant (LTI) system of (4). Because A is a
diagonal matrix and diagonal entries of are eigenvalues of

linear operator in (1), the LTI system is open-loop stable
and has umque symmetric positive define controllability
gramian P and observability gramian Q which have
full rank. Let P = GG, Q = HH' be square root
decom-positions and defining GH" = W V" as a singular
value decomposition, then using the MATLAB style
colon notation, the transform matrix R = [GWEY] (;,1:K).

Because of the balanced truncation model reduction,
the obtained matrix R whichis of column-orthogonalty.
Thus, R'R =T,

MODEL REDUCTION USING NEW BASIS
FUNCTIONS

Given the column-orthogonality of R and
{9,(x),..9,(x)}, the k new spatial basis functions are
shown to be orthogonal toward each other. Using the new
spatial orthogonal basis functions, the spatio-temporal
variables X, U, Y of Eq. 1 can be expanded into a
truncation series with corresponding temporal coefficient

&, (B, u(t), v, (1), respectively:
X(z.0- Y8 (1w
U(zt) =z (thw(z) 7
Y(Z=t) = Z]::i (t) W (z)

=

The insertion of the expansions of Eq. 7 and the
application of a Galerkin method, an ODE system with
fewer modes is obtained as follows:

()+Bu(t)+E(a(t)u(t)) (8)

Where:
a(t)=[g, (1,3, (1), 7,
k<NA =R"AR, B, =R"B
Faay.u(ty)=[f @n,ut), - @)t

Where:

)= [ FX U@

Denotes the nominal nonlinearities.

The nominal nonlinear terms f@®H.u() in (8) may
be have unknown terms or be difficult to have an
analytical presentation  because of  complex
spatio-temporal nonlinearity of PDEs and integral for

scalar  productionFor  the further application of
traditional control techniques, intelligent identification
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modeling is trained to be a nonlinear model of
the nonlinear DPSs in state-space formulation.

GREY-BOX MODELING APPROACH

A low-dimensional grey-box modeling method is
proposed to model the nonlinear spatial distributed
processes. For hybrid intelligent identification, there are
m actuators with implemental temporal signal u (t) and
certain spatial distributions. The output Y(zt) is
measwred at the n spatial locations z.z.-z and some
sampling time t,, t,, .t,. For practical implementation, a
discrete-time model is often used. The previous reduced
model 8 based on the new spatial basis functions 1s now
discretised by Euler forward formula as follows:

a(k+1)={I+AtA )a(k)+ AtBu (k)
+ A (a(k) (k) 9
¥(k)= AtC (k)

with At being the sampling time. For simplicity, one
can replace 3k}¥k) with ¢ (k) v (k) and the following can
be derived as:

a(k+1)=Aoa(k)+BDu(k)+f(a(k),u (k)) (10)
ylk) = Coalk)

With:
A, =T+AtA B, = AB.C, = AC,

t(alk).0 (k) = A (a(k) 0 ()

A hybrid intelligent discrete system can be used to
model the nonlinear dynamics (10) as shown in Fig. 1,
while a feedforward neural network NN[atk)utk)] is trained
to identify the nominal nonlinear terms f(atk).u{k)), The
advantage of the neural networks 1s its ability to
model complex nonlinear relationships  without
any assumptions

Ak
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Fig. 1: Neural networks based hybrid modeling

on the nature of these relationships. The most often used
neural networks include the Radial Basis Function (RBF)
networks, Back Propagation (BP) neural networks, among
others. The present study employs a feedforward BP
neural network to construct low-dimensional substitute
model for the nonlinear dynamics of spatially distributed
processes.

The hybrid intelligent model is expressed as follows:

Alk +1)= A,afk) + Byu (k) + NN[a(k), u(k)] an
§(k)=Catk)

The above grey-box model is trained to construct
low-dimensional approximation for the dynamics of
spatially distributed processes. Because of the known
Adk)+Buk) the neural networks will have high
computational efficiency which also can compensate the
high order dynamics and decrease the approximation
error. The grey-box model can be solved by sigmificantly
reduced computational complexity.

The spatio-temporal prediction output ¥(z,1) is
obtained by synthesis of time predicted output¥%)and
the new spatial basis fimctions:

Fizk)= i § (K (2) (12)

Where:
F(k)=Ca(k)
A NUMERICAL EXAMPLE

In order to evaluate the proposed grey-box modeling
reduction strategy for spatially distributed processes, a
highly simplified mathematical formulation representing
the competition between convection and diffusion, the
Burgers equations, 15 studied. The Burgers equation
15 a one-dimensional spatial model of a variety of
three-dimensional  physical  phenomena,  greatly
simplifying the problems while retaining many of the
complex behavior characteristics. Recently 1t 1s used as a
model to study the scaling and intermittency of
turbulence. Suppose Y (z, t) and ¥t as the measured
output and the prediction output at the n spatial locations
Zy, Z, .., 7 ,and some sampling times t, t, ..t,
respectively. The Root of Mean Square Error (RMSE)
between the real dynamical process and the approximation
model is defined as the performance index as follows:

RMSE - (8 5 [¥iz - if(g,r,)]z/nL (13)
i =1
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Table 1: RMSE of spectral based model and grey-box model

RMSE k=1 k=2 k=3 k=4
Spectralbased 0912 0.300 0.132 0.083
model
Grey-box 0.424 0.231 0.080 0.034
model

Table 2: RMSE of speciral based model with 5,6,8,10 modes

RMSE k=5 k=06 k=8 k=10
Spectralbased 0.0583 0.0538 0.0509 0.0506
model

The viscous Buwrgers equation with spatio-temporal
mput 1s considered m one space dimension. This
equation contains nonlinear convection and diffusion
terms and retains many of the interesting features of the
Navier-Stokes equation. The governing equation may be
written as:

~rZ bz (14)

In this note, 14 subject to the Dirichlet boundary and
initial conditions:

X0, 1)=0,x(1,1)=0,x(z0) =x%x,(z) (15

There are available four actuators u(ty= [, (t),- - u, (1"
with the spatial distribution functions h(z)=th,(z),---.h,{z)",
where:

h(z) = H (z-(i-1)m/4), i=1..., 4

And H (.) 1s the standard Heaviside function. In the
simulations, the random input signals are used to excite
this process.

The testing signals are selected as:

w(t) = 1+4sin (Tt10) (i = 1...., 4) (16)

Suppose 24 sensors uniformly distributed in the
space are used for measurement. A noise-free dataset of
500 data is collected from Hq. 14. The sampling
mtervalAtis 0.01s and the simulation time 1s 5s. The
viscous coefficient 1s set to 0.2, the imtial condition
Xz) 18 set to be sin (mz). For a real system
sufficient data are always required to obtain a
satisfactory model.

A spectral developed for
(14), where the family of spatial orthogonal basis

based model 13

functions:

V2sin (krz), k=1,2, ..., 00
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Fig. 2: The first four new spatial basis fimctions

Fig. 3: Measure output for testing

is  used for time/space separation  and
low-dimensional truncation. For synthesis of spatial
variables and dynamics of spectral based model and the
proposed grey-box model, the RMSE over testing data are
compared in Table 1. As shown in Table 1, the modeling
error is much smaller than when using the spectral model
with the same modes.

To illustrate the effectiveness of the proposed
grey-box modeling approach, we have computed the
RMSEs of spectral based model with 5, 6, 8, 10 modes
which 1s shown m Table 2. From Table 2, it 1s obvious that
the RMSE of proposed grey-box model with 4 modes is
smaller than that of spectral based model based on 10
modes.

From Table 1, the grey-box model up to 4 modes is
sufficient to capture the dynamics for control design and
its performance is shown. Firstly, 4 new basis functions
are shown m Fig. 2.

In order to demonstrate

grey-box model, a

the performance of

new 100
data 1s collected for testing, as shown m Fig. 3.
Synthesis of the predicted dynamics of the proposed

proposed set of

grey-box model and new spatial basis functions,
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Fig. 4: Prediction distributed output of hybrid mtelligent
model on testing

Fig. 5. Prediction distributed error of grey-box model on
testing

predicted output and distributed error of the Burgers
equation can be estimated as shown inFig. 4 and
Fig. 5, respectively.

CONCLUSIONS

A grey-box modeling methodology using new basis
functions is proposed the reduction of spatially
distributed processes. The methodology amounts to find
low-order substitute models for the processes which can
balance the dimension, computational efficiency and the
accuracy. A series of new spatial basis functions is
developed by basis functions transformation. Model
reduction 1s pursued by tume/space separation and
projection on the set of new basis functions.
Subsequently, an empirical compoenent 1s identified to
substitute the nonlinear terms and un-modeled dynamics.
As a consequence, a grey-box model has been developed

to approximate the spatially distributed processes. The

simulations show that the combination of the model
reduction and black-box identification applied to the linear
and nonlinear parts of the mechanistic models results in
a pgrey-box model which have less modes and high
accuracy.
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