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Abstract: To determine the stopping time of disaster emergency, this study put forward the Markov chain’s
decision model of emergency situation termination at first time. The situation of emergency had two situations,
mcluding emergency tension situation and emergency stationary situation after the study analyzed the
mfluence factors of emergency termination situations. Firstly, this study found out the maximum time by
Markov decision model after emergency situation had gone into the stable phase and then the study
established Markov cham’s decision model of emergency situation termination, the optinal stop theory was
used to solve the question of the emergency termination to find the most optimal termination time during the
N. The Markov cham’s model of emergency situation termination could accurately solve the question of the
quantification decision of the end time of emergency situation and the calculation was simple. Markov model
provided the theory support for emergency termination decision of the disaster service.
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INTRODUCTION

Termination of emergency condition, as the last step
of emergency response mechamism, is crucial to the
transition of emergency management and service from
tension situation to steady situation and further to the
ordinary situation, that severe secondary disaster and
huge waste of properties might be caused 1if it stops too
early or too late. After a disaster, the emergency
decision-making organization shall collect relevant
information promptly for an effective assessment of the
time to terrminate this emergency work, which 1s important
to raising and distribution of emergency supplies,
acceleration of disaster relief and lower emergency cost.
Meanwhile, such assessment is used as the basis in
decision making for the launch of post-disaster
rehabilitation and reconstruction. According to the
current practice of disaster relief, the termmation time 1s
determined mainly based on the past experience, that no
sound foundation is available, which poses great risks to
achieving the entire relief goal and increases the threat of
secondary disaster. Therefore, it 1s required to go deep
into the issue of the termination of emergency condition,
which 1s not only essential for the correct termination of
emergency process, but also important for high efficiency
of disaster relief.

The issue concerned is covered in the study of
emergency management mechamsm and there have been
many researches concerning the composition of
emergency management mechanism (Shan et af., 2011,
Han and Liu, 2006, Zhong, 2008, Corriveau, 2000,
Fiedrich et ai., 2000, Chen et al, 2007, Liet al., 2013) and
the implementation of its single parts. The issue itself,
however, 13 seldom involved. According to the existing
literatures relevant, the major consideration is to design
the optimal stopping mechanism based on single factor
influencing the emergency condition. For example, based
on secretary problem with fimite scenarios, Chen and
Wu (2010) presented a model based on Optimal stopping
Theory aiming at the maximization of efficiency mdex and
took termination mechanism as an important part of
emergency management, which connects emergency
response mechanism and reconstruction mechanism. This
model 13 designed to find the optimal stopping time for the
termination of emergency condition based on known
stochastic efficiency, which makes little sense as the
guidance for making decision in the progress of
emergency relief.

In view of this, this study considers multiple factors
that influence the termination of emergency condition,
combines Markov decision-making process and Optimal
Stopping Theory to build the termmation model with finite
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scenarios and takes a simulation case to verify its
feasibility and efficiency, in order to provide theoretical
basis and technical support for the practice of emergency
management, which 18 meamngful for igher efficiency of
disaster relief and effective estimation of the total demand
for and total capacity of emergency supplies.

MARKOY PROPERTY

Principle: In Markov process, the initial situation of a
certain system 1s assumed as an mnput. If the moment n 1s
regarded as the "current”, the moment 0, 1, ..., n-1 as the
"past” and the moment n+l as the "future", Markov
property indicates that when the "current” situation of a
certain system 1s known, the conditional probability of
any "future” situation of the system is independent to its
"past" situations. The system will transfer among the
potential situations with a certain probability distribution.
That 1s, the "future" situation features stochasticity,
which 1s similar to the efficiency variation of emergency
system, resulted from the restriction of emergency
capacity and other uncertain factors. Therefore, it is
feasible to employ Markov process to deal with the issue
concerned.

For the purpose of building termination model of
emergency condition by Marlkov decision-making method,
it 1s important to determine the time needed by each
situation of the emergency system to come to steady
situation. After that, the distribution probability of each
measuring index is constant and the values of the
situations obey exponential distribution (Liao ef af., 2012).
This 15 the first assumption in dealing with the issue
concerned by Markov chain and its principle (Chen et al.,
2004; L1 et al., 2009; Mao et al., 2007) 1s: Let Q be the
population and P the probability measure of Q and
mvestigate the stochastic process with discrete time
parameter and discrete situation space X = {3 neN'},
3,€E, where time parameter set is N'= {0, 1,2, ...} and
situation space E= {0, 1,2, ...} For X = {X; neN"} and
for every j€E and neN”, there 1s:

P{Xn+l:j‘XU’Xl""’Xn}:P{Xn‘H:j‘Xx‘l} (1)
Equation 1 1s the Markov chain of stochastic process X,
which is equivalent to: for any neN" and for any iy, i,,...,1,,

j€R, there is:

P{Xn+1:j|XU:iu’Xlzil’""Xn:in}: (2)
P{X,, =jlX, =i}=p] (n)

Equation 2 describes the probability of the transition from
situation 1 to situation j through one single step at

moment n during the stochastic process X. Similarly,
according to the Markov property of the stochastic
process X, the probability for X to transfer from situation
1 to situation j through k steps at moment n can be
expressed as:

PP (0) = P{X, = il X, =i}, Lic E,n 20 (3)

The probability properties of Eq. 2 and 3 are
described by the initial probability distribution and the
matrix of transition probability of homogeneous Markov
chain. For the purpose of Eq. 2, the initial probability
distribution of homogeneous Markov chamn 1s assumed
as:

P{X,=i}=p;.p} 20 and > p =1 {h
EE

Then, for any meN" and i,1,...,1,€E, there 1s:
. . . "
P{XU =1, X =y, X = 1m} :pfa)pinilpnig"'pl...,li,.. (5)

Equation 5 shows that, once the 1mtial distribution
{p”tand the matrix of transition probability P are
determined, the finite dimensional combined distribution
of ¥, X, ....X_. meN" can be determined; meanwhile, the
probability of transition through multiple steps can be
determined according to the probability of transition and
total probability theorem. Tf there is a limit to the transition
of k steps, 1.e.:

where, ¢;1s a constant and the nonnegative sequence
¢ = (¢, C,....) 18 a stable distribution of {X_}.

According to the characteristics of disasters and the
stochasticity of the fluctuation of the indexes of
emergency condition, the optimal termination time must be
solved as a certain time or window before the entire
emergency system is tending towards a steady situation,
that it is not conductive to the maximization of the
efficiency of emergency response when such termmation
1s too early or too late. Such principle of Markov chain
provides the theoretical method to solve the issue
concerned. In discussing the termination of emergency
condition, the first thing 13 to obtain the tumes, through
which the entire emergency system reaches stable
distribution by several steps (situations), then we can
determine the optimal termination time before the time
reaching steady situation based on Optimal Stopping
theory.
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Fig. 1: Disaster emergency situation division

Measuring Indexes: Typically, in the early stage of
disaster, a certain time 1s needed for emergency response
and the mformation about disaster area 1s not available
immediately, thus it is not possible to meet the demand in
disaster area rapidly. In this stage, the emergency works
1s 1n a ligh-tension situation. With the launch of disaster
relief, more and more mformation about disaster area 1s
becoming available rapidly and the emergency capacity is
getting improved, compared to the early stage of disaster,
thus the demand in disaster area can be met fast. In
another word, the emergency work comes to steady
situation and finally termination situation. Therefore, the
emergency condition can be divided into two finite
situations: tension situation and steady situation, with the
population of fimite situation: E = {0, 1, 2}. For a
comprehensive measurement of the entire process of
emergency condition, the indexes must be selected
highlighting the tasks and objectives of disaster relief, at
the same time, they shall be able to be used throughout
the entire process of situation transition, while relatively
independent to each other. Therefore, the measuring
mdexes for emergency condition should be extracted from
disaster control, demand satisfaction, temporal settling
(including for the casualty), emergency cost, social impact
factors and other aspects. Among these aspects, social
impact factors, such as public panic, can last for a long
time, which 1s difficult to quantify. Meanwhile, such panic
is influenced by the level of disaster, efficiency of relief
and other factors during the limited time of emergency;
besides, the main manner to elimmnate 1t 13 long-term self
adjustment and psychological aids. Therefore, no social
factor is included as the measuring index for emergency
condition.

As the focus of emergency works 1s not on its
economic efficiency, emergency cost 1s not mcluded as a
measuring index for emergency condition. To sum up, this
study selects Disaster Spread, Demand Satisfaction and
Temporal Settling as the measuring indexes for emergency
condition Fig. 1.

For the calculation of probability of emergency
condition’s occurrence, Disaster spread is the factor that
would cause contimuing spread or expansion of the
coverage or loss of disaster after its breaking out. Based

on the preliminary statistical data, or referring to past
cases, two ranks (tension situation and steady situation)
might be defined in terms of the occurrence of disaster in
unit time according to certain criterion and the frequency
of each rank can be counted separately. Take flood for
example, the two ranks might be defined m terms of the
coverage expansion in umt time and the frequency
counted for each rank could be regarded as the
probability of transition (0, if there is no occurrence). In
the same way, the two ranks for epidemics might be
defined 1n terms of the variation of number of nfections
and earthquake in terms of the numbers of aftershock.
Demand Satisfaction is the supply-to-demand ratio of
emergency supplies and the calculation of probability of
each situation 1s similar to that of Disaster spread.
Temporal settling concerns the ratio of population settled
vs. population to be settled. Tn brief, two ranks are defined
for different situations in terms of such ratio and the
frequency counted for each rank is regarded as the
probability of transition.

MARKOYV DECISION-MAKING PROGRESS

Basic assumptions: The vector of Markov chain of
emergency condition is assumed as {£,, £, £}, where
£, is the Markov chain of Disaster Spread, £’ the Markov
chain of Demand Satisfaction and £, the Markov chain of
Temporal settling. If the first-order probability of
transition P (n, 1) is independent to n, the vector of
Markov chain {£,', £, £’} is time-homogenecus Markov
chain and the first-order probability of transition would be
marked as P (1). That is, for any positive integer, there is
P(n1)=Piy.Li=12

The probability of temsion situation is assumed as P
(X =1) and that of steady situationas P (X = 2);

For disaster spread, the probability elements of
one-step transition between the two situations are €,
1-g,, and €,,, 1-€,,, for Demand Satisfaction are 1, 1-1;
and 1), 1-1),; for Temporal Settling are p,,, 1-... and p,,

1-pyy.

Optimal stopping time decision: Determimng the
maximum  plarming  stopping tune: Based on  the
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assumptions above, there are two situations and three
measuring indexes for emergency system. For Disaster
Spread, Demand Satisfaction and Temporal Settling, the
probability matrices of their transition between the two
situations are assumed as P;, P! and P.”, respectively and

the vector matrix of k-step transition is:
P (k)= ® ) B Bk Pk @k sz(k))} (6)
’ By k) Ppk) By PRk Bk Py

Where:

BEk)=PiX: =T, 1% =i}, 0<Pi(k) <1

otk

and:

3
(bj=12%5=123%k=12) 3 Pi{k)=1
=1

The 1mitial situation of emergency system 1s assumed
as B and the condition vector after a transition
through n unit intervals is C. According to C-K
(Chapman-Kolmogorov) Eq. 9, there 1s:

P(X,} = P(X,)P(n)= P{X, )P M

Therefore, the probability distribution of emergency
condition after n stages can be calculated based on the
initial situation and the probability of one-step transition.
Based on the conditions given above, it is possible to get
the distribution function of P (X):

P(X=1)=P(X, =LX,, =D+P(X, =LX,, = 2)

=P(X, =1 X =DP(X,, = 1)

TP, =1 X, = 2PX, = 2)

=[P11P(X11-1 =1)- P111P(X121-1 =1)- P121P(X131-1 =1)]

‘*‘[PnP(XlH =2) P111P(Xi—1 =2) PﬁP(Xi—1 =2)]
=&,y 1y POX, =DP(XE, =DPX, =1)

e Ty My {1 - P(X,, = DL -P(X2, =1)]

U-PEC, =1]

={l(e,, - 521)P(X;-1 =1)+e, ] {(n, - nm)P(Xf\-l =1)+1y]
[ty = 1y PG =1 +py 1} (8)
={ey — e PO = D)+ a1+ (5 — 8301}

(g — My PR, = 1)+ L+ (- 013

(= 1 ) POC = 1)+ L+ Gy — 1)1}

E E
=[P = 1) - —2—) - (5 — 8 )]+ —2
gt ey gyt ey

(PG =1 - —E—) -y -y P+ —E—)

My + M2y Thy + My
APeE =1y- 2y gy -y P14 2
My + Py Mgy + 1y

In a similar way:

P(X,=2)

= {[P(Xlu =2)— (1g)]- (8 — )" +(1-8,4)} (9)
{IP(E = 23— (1-n,)]- (1, — My, )™ + (1o, 0}

PO = 2p = (4, ) (e — gy o+ oy 3}

In case of a major disaster, the probability that the
emergency control center launches emergency relief is

100% and the probability distribution of the initial
situation of emergency condition can be assumed as:

PX)=[1 1 1) (0 0 0y (10)

Where:

B(X,)=[P(X, =1),P(X, =2)]

gy 5 )
gy —Ey ) +
gy ey gy ey
Thy n T
AT~ M)
L (1)
My u Ha
(Hy )T ]
Hyy + Py Hyy + 1y

[(& 1) (&g — &) + Qg [Ty 1) (Mg — Ty ) + My )]
[y -1 gy — gy 3+ oy 13

Equation 11 is the probability vector of emergency
condition when the stochastic process X has been
through n finite unit times; no matter the initial situation
of emergency condition 18 1 or 2. After the probability
transition through several finite unit times, the probability
that the emergency condition equals to 1 or 2 is tending
to steady situation and the probability of such steady
situation is independent to the initial situation. The
probability of steady situation 1s assumed to be m and
when the emergency system comes to steady situation,
the condition A is true. That is to say, the probability that
the emergency system comes to steady situation after
several unit periods is © and the total time for it to come
to m, N (where N 1s the number of days, the product of n,
the total periods through which the emergency system
comes to steady situation and the number of days of each
period), is the maximum time for the termination of
emergency condition. In another word, the probability of
steady situation when all measuring indexes come to
steady situation is:

E\i—{gP(XI = 2):,1\52[(511'1) . (511 — &y )n + (1'511)] (1 2)
lim P(X, = 2)=Hm[(n,1)- (1, = 1, )* + (11, )] (13)
lim P(X, = 2)= Bm[(w,-1)- (1, =g, )* + (14,1 (14)
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The condition vector when the entire emergency
system comes to steady situation is:

By

. _y L P ta
I111_)1'1‘}})P()(11)—tl\lgnm{[ ey —Ey) +

gy tEy gy Ty
ul ATy T ) T
Ty + Ty Ty + Ty
) 15
Hu (g —Hy ) = 1 ( )
My iy Hy + My

[(511'1)' (511 — &y )n + (1'511)]
(L (1 — Ty )+ @y ]
Hlw 0 Qg =) + (1, )]p=n

According to the characteristics of emergency work,
when emergency condition comes to steady distribution,
1t 18 the time to terminate emergency condition, but not the
optimal termination time. As it 18 impossible to restore the
original condition after a disaster, social disorder and
damage to human life and people’s property are the
mevitable results of disaster, so that the primary objective
of each emergency relief is to cure the mnjured with all
efforts, to satisty the demand in disaster area as possible,
to save the trapped, to arrange temporal settling and to
take pretentious actions against secondary disaster,
which calls for a huge amount of time, especially to satisfy
the demand in disaster area as possible. Therefore, when
the emergency condition comes to steady situation, it
means that the emergency work i disaster area comes to
ordinary situation, which means the termination of
emergency condition; otherwise, it would be still in the
relative tension situation. Therefore, the time when the
emergency system comes to steady situation can be
considered as the maximum planning stopping time, N,
whle the optimal stopping time of emergency condition 1s
mncluded m N.

Determining the optimal stopping time: For decision
making of termination of emergency condition, the first
goal is to find the total time needed by the emergency
system to come to steady situation, N and the second
goal 1s to determine the optimal stopping time before N,
for maximum efficiency of emergency work, to provide the
basis for decision making in estimating the demand for
emergency supplies and launching the rehabilitation and
reconstruction in disaster area. The issue of optimal
stopping time of emergency condition is a typical issue of
stochastic decision, which focuses on choosing a time or
window 1 (0, N) as the optimal stopping time of
emergency work. Only when such optimal stopping time
is chosen can maximum time efficiency and minimum
damage of disaster be available. With the value of N
above, the next step 1s to decide the optimal stopping time
of emergency condition within (0, N).

Basic assumptions on the issue of optimal stopping
(Tin, 1995; Lorenzen, 1981; Y1, 1998).

Assuming that (Q, F, P) is a complete probability
space, (F)),” 1s a row of increasing sub-o algebra of F and
for ¥n, there is F,cF,,,. For emergency work, £ can be
used to express the entire set of emergency condition, 1-
€,, the set of all events, P the measure of the probability
of each event m f, then P (Q)=1.

Assuming a row of stochastic variables ().~
called Reward Function Sequence. For each n, X, is F,-
measurable, marked as X, €F , then {X_,F,} _,"1s called a
stochastic sequence. When the value of stochastic
variable {1, 2, ..., +e} 1s 1-1,,, it is called the stopping
time. At that time, if ¥n, {w: t=n}eF, and P (t<eo) = 1, tis
called stopping criterion. The entire set of stopping time
1s marked as H and the entire set of stopping criteria is
marked as H.

Usually, we can observe the stochastic variables
Yis Yoaeoon ¥o 1 sequence and the reward function
sequence X, 18 comresponding to v, va,..., Y,
known.

For the issue of optimal stopping of emergency
condition, (X),.,” can be defined as the emergency reward
sequence X, (also called the emergency efficiency
sequence) composed by the values of emergency
efficiency of n days before each point to decide stopping
i N (neN) days and each X 1s a sub-0 algebra of an
increasing sequence of 1-g, from the maximum to the
minimum, where each 1-g, is an increasing set of
sub-events from 1 to +e and each X, is corresponding to
each 1-g, and measurable. There is at least one moment
t that thus condition 1s true, which composes the set of
optimal stopping time.

Based on the assumptions above,
concluded that, for the optimal decision on the
termination of emergency condition, the first step 1s to
decide the measuring mdexes of reward sequence and to
determine the optimal decision criterion; the second step
is to determine the stopping criterion and algorithm for

and 1s

it can be

each optinal criterion and the final step is to make
decision for the optimal stopping time of emergency
condition.

Proposition of measuring indexes of emergency
efficiency and optimal criteria: Aiming at the maximum
relief efficiency, the measuring indexes of emergency
efficiency are chosen not only to represent the key factors
influencing the emergency condition, but also to take
account of those indexes influencing the maximum
emergency efficiency. At the same time, it should be
convenient to quantify these indexes. Generally speaking,
time and cost are the key factors that mfluence the
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Table 1: Measuring indexes of optimal stopping decision-making for
emergency work

Condition
index Description Calculation Conversion
M, The time taken for M= The total time M = 1/M,
emergency supplies needed for the
from the submission distribution of each
of dernand plans to batch of emergency
actual distribution in supplies/The number
disaster area of dernand calls
C The cost of emergency C=The cost of Q=1/C

supplies and associated  emergency supplies
transportation cost everyday+Associated
everyday transportation cost

emergency efficiency. So far as the focus of emergency
works is not on its economic efficiency, it is necessary to
take the cost of emergency work into account as the time
efficiency has priority. This is one of the important
directions of emergency management research in the
future.

Assuming that emergency supplies are provided
everyday during emergency works, emergency cost is
meurred everyday correspondingly. The index of time
efficiency of emergency work focuses on the timeliness of
emergency supplies, which means that the emergency
system can meet the demand quickly and efficiently once
there 1s any demand for emergency supplies. This i1s one
of the decisive indexes to ensure the smooth performance
of emergency works and one of its measuring indexes is
the mean time of demand satisfaction (M,), that less time
needed for demand satisfaction means higher time
efficiency. The index of cost efficiency of emergency
worls is composed of the cost of emergency supplies and
the associated transportation cost, which is calculated as
the total of expenses and cost everyday. Therefore, the
emergency cost (C) is also a key measuring index
(Table 1), that lower cost means higher cost efficiency. As
M, and C are relatively independent indexes during the
entire process of emergency work, it 1s impossible to use
one combined mdex to take account of both and the only
solution is to make decisions separately based on the
optimal stopping criterion. For convenience, the method
of determining optimal stopping by index M, will be
mtroduced as an example hereunder. For the purpose of
making final decision, the solution is to choose the later
of the two times determined separately by the two indexes
as the optimal stopping time, m that the emergency
condition shall be terminated only when both of the two
indexes come to the optimal value, otherwise the optimal
emergency efficiency is not available.

Let M (1), M (2), ..., M(N) be the values of M for N
days. This 15 a decreasing sequence with all the elements
ranked by their absolute values, in which M(1) is the
greatest and M (N) the lowest and which is available only
when the number of days comes toN, but not during

making stochastic decisions. Only the values of M in the
past n days are available for such ranking, resulting n a
relative rank for making decision each time, which means
that only a stochastic arrangement of 1, 2, ..., N is
available for each stochastic decision; therefore, the goal
of stochastic decision is to find the greatest probability
with higher efficiency and higher rank. If the reward
functions for more than two days in a row are the same,
the corresponding values of M for these days could be
ranked by the values of N. If one of these days is the
optimal stopping time, any day in such row can be chosen
when making decision, which is quite impossible in
practice, as there are so many uncertain factors in
emergency works that the mean time to meet the demand
for emergency supplies is quite different everyday. Then,
the issue of the optimal stopping time for the termination
of emergency condition tums to solving the two
standards below:

Standard 1: The probability that the time with greatest M
is chosen as the termination time shall be the highest;

Standard 2: The time with the rank of M in the top of the
possible arrangement shall be chosen as the termination
time of emergency condition.

Formation of the stopping criteria for the two
standards (Che and Tin, 1995; Frank and Samuels, 1980).

Let Q = {a,, a,..., ¢}, where (¢, ..., &) is an
arrangement of (1, 2, ..., N, y,_@,. &s,.... &, where the
relative rank of ¢, is the mumber of elements less than ¢,
iny, Assuming F___ ., .2 then, For Standard 1, take

Lyl
the reward sequence:
Xa={b 7! (16)
0, a, =1

but it does not meet the requirement that there shall be a
measurable F . Let:

X, =P(a =1|E)n=12.,N (17)

then , for any stopping criterion t:

BX, =Y % :Z; . P@, ~UE)-P@-D (18)

n=l

where, P (¢, = 1) represents the probability that the value
of M ranks the first in the arrangement, i.e. the probability
that the value of M 1s the greatest, when stopping
criterion t 18 chosen. Then, the optimal criterion for
optimal stopping of {X, F,} should be:

L:inf{n 2r*:yn:1} (19
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Where:

r*:inf{rzl:l+L+...+ ! sl} (20)
r r+l N-1

The lowest r that meets this condition 1s the value of
r* and the time t corresponding to the greatest M after r*
obeymg Eq. 19 1s the optimal termination time of
emergency condition. For the convenience of calculation,
™ can be obtained by calculating the limit of Eq. 19. Based
onEq. 20:

N-1 1 N-1 1
—=l< - (21 )
d=r d d:zr‘:-l d
Then:
[y =3 [May <1 <[ Ly (22)
Y a=r* ey
Therefore:
lim Y 1
H—wo r
Le.
imE -1 (23)
H—se N e

According to Eq. 23, when the value of N 15 known,
the value of r* can be calculated directly and it 15 not
necessary to take the values in sequence within (0, N) and
substitute into Eq. 20 to obtain r*.

For standard 2, take the reward sequence:

x =N+l (24)
n+1
The optimal criterion is:
W=inf{nz1l:y, <W,2} (25)
Where:
w, :[—;:11 oV Jn=N-LN-2_ lw, =0
[#] representative integer arithmetic:
v =_NF1L (26)

N 2

V. = —E(;: ¥, A=Y, ] (27)

where, 1 <n<N-1. Here aAb is min (a, b),Now meeting time
points t, of rules of W is the optimal time of emergency
termination.
Justifying:
N+1

Vy=EXy=-Eyy= ’T

Here, y, sequence 13 independent of each other.

Now using backward induction testifies that the
optimal rules W = inf {n>1: y,<W,} is established.
Yo~ X EY Ey,n=1,2, ..., N-1.

Presuming:

n+1
W = 7[ﬁvnﬂ],wN =0n=12..N-1

n

1e.;

n+l 18 [N+,
V, =-E{l——y, n(-V )]=—— A=V,
et ) n§{n+1j ¢ m}
1 N+1& . . n+l
- . Al-———. ¥
n n+1§l ISR
1[N+1
:—{ (1+2+...+Wn+(n7W“)(7V“+1)}
nln+1l

So, The optimal rule:

o =infin21:X, =y, }

. N+1
=infinzl:——y =<-V
{ n+1Yn n+1}

=inf{r121:y11 SWn}=Wn

15 established.
According to the above, we can design the algorithm
of standard 2:

N+1
Vg=-—
n=N-1
n+l
A :—[ﬁvnﬂ],n =N-LN-2,..,1
1[N+1
V“:_I{H(” 24 AW+ (n - W -V, )}
. n+1
tn:mt(_ﬁvnﬂ)
n=N-2

Among the outputs, the times that correspond to the
condition t, = 1 are the optimal times, which form a
window, marked as (a, b).
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Decision making for termination of emergency
condition: For the purpose of decision making for
termination of emergency condition, the optimal criteria
for the two standards above can be employed separately
or in combination. When Standard 1 is employed
independently, it can be known immediately that the
termination shall not be performed before nt [r*] days
when the value of r™ 1s determined and it could be
reasonable to terminate the emergency condition at the
time t corresponding to the first time when the greatest
time efficiency M oceurs after int [1*]. The exact value of
such t 18 only known after all 1s done, which 15 only
meaningful for afterward assessment of emergency work,
but meaningless for predicting the demand for emergency
supplies, or for directing the comprehensive arrangement
during the middle to late phase of disaster. Therefore,
when the values of N and r* are known, the window to
make decision for the termination time of emergency
condition 1s narrowed down greatly and it 13 possible to
perform case verification to estimate the time when the
greatest M appears for the first time after int [r*].
Alternatively, the intersection (int [r*], N) n (a, b) can be
taken as the window, marked as (¢, d) and the average of
¢, d might be taken as the optimal termination time.

Similarly, the optimal stopping time based on cost
efficiency can be decided by the method above. The
termination times determined by the two indexes
separately are not always the same and the emergency
condition shall be terminated only when both indexes
show the optimal stopping condition. Generally, the
optimal stopping time chosen based on the mdex of time
efficiency prevails, according to the characteristics of
emergency work.

CASE STIMULATION AND ANALYSIS

Taking some hard-hit areas in “5+12” Wenchuan
Earthquake in 2008 as examples. The case stimulation is
divided mto two stages. Stage 1: Employing Markov chain
meodel to find the latest termination time N, when the
emergency condition comes to steady situation. For the
initial stage, each 5 days is defined as one unit time. For
Disaster Spread, the number of after-shocks during 13th,
May to 17th, May 1s counted to obtain the stimulation
data (Table 2) and the influences of different seismic
intensities listed in Chinese Seismic Intensity Scale (1980)
are referred to, where Tension Situation 1s defined when
there are two earthquakes higher than Magnitude 5 or one
earthquake higher than Magnitude 6 in a day, otherwise
Steady Situation. For Demand  Satisfaction, the
supply-to-demand ratio of emergency supplies in mutial
stage 18 counted and medical supplies, which 1s

Table 2: Aftershocks statistics in Wenchuan earthquake on May 13-17

Frequency
Date Level 6.0 and above  Level 5.0~5.9 Level 4.0-4.9
On 13, May 1 5 41
On 14, May 0 2 16
On 15, May 0 1 10
On 16, May 0 1 10
On 17, May 0 2 11

Table 3: Initial stage of medical material supply and demand in Wenchuan
carthquake

Medical equipment  Disinfect supplies
Medicine/unit funit ft

Date Demand Actual Demand Actual Demand Actual
(May) planning  deployment planning deployment plarming deployment
13 47308.97 2880.00 539 4.00

14 239780 1.20 55472 0.00 0.01 0.00

15 4403.31  4360.00 19340.67 183.00 11.81 3.10

16 7184.87 4040.90 4955.20 2754.80 14.18 9.10

17 15565.27 13903.09  4134.30 4134.30 173.87 115.52

Table 4: Tnitial stage of temporary placement in Wenchuan earthquake
(13-17)

Actual number of
temporary placement at
a time/million

Expectations number of
temporary placement at
a time/million

Planning times of
temporary placement

1 112 87.34
2 78 71.12
3 123 103.33
4 118 101.12
5 132 89.23
6 147 98.56
7 120 77.05

considered as the most significant material influencing the
emergency condition, is used as stimulation data, where
Tension situation 1s defined when the supply-to-demand
ratio 1s lower than 75% and Steady Situation when higher
than 75%. This definition is reasonable and see Table 3
for the stimulation data. For temporal settling, the ratio of
population settled (including the victims placed) vs.
population to be settled in initial stage 1s counted, where
Tension situation is defined when this ratio is lower than
84% and Steady situation when higher than 84%. See
Table 4 for the stimulation data. For the purpose of this
stage, it is only required to solve according to the optimal
termination criteria of the two standards based on the
value of ,; and the optimal termination time is to be solved
1n Stage 2:

»  Stage 1: The random distribution of steady situation
of emergency condition

According to the data in Table 2, 3 and 4, the
frequency of each index in initial stage is calculated,
resulting to the vector of the probability matrix of
one-step transition of emergency condition:
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Fig. 4: Steady distribution of temporal settling

g, =0331-g, =0.67,5, =051=x, =05
M, =0.75,1-n, =0.25,1, =05,1-n,, = 0.5
1y =0.5, 1, =0.5, 1, =0.33,1-p, =0.67

Based on Eq. 12-14 above, the stimulation graph of
the transition of each measuring index can be obtained
(Fig. 2-4).

According to Fig. 2-4, when Disaster Spread comes
to steady distribution, P (X, =1)=0.33, P (X, =2) = 0.67,
before which there was a transition through 11 umt
periods (i.e., 55 days), when Demand Satisfaction comes
to steady distribution, P (3{, = 1) = 0.44, P (X, = 2) = 0.56,
before which there was a transiton through 13 umt
periods (i.e., 65 days) and when Temporal Settling comes
to steady situation, P (3, =1) =046, P (X,=2)=0.54,
before which there was a transiton through 11 umt
periods (1.e., 55 days). Among the three indexes, Demand
Satisfaction calls for the longest time to come to steady
situation; therefore, the priority to accelerate the
termination of emergency condition shall be to improve
the raising and distribution of emergency supplies.
However, the time when a single index comes to steady
situation can not be used as the maximum planning
stopping time of emergency system, N, which can be
determined only when the emergency system
comes to a relatively steady situation. Therefore, it is
possible to use Hq. 15 to get the distribution curve of
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for emergency work

Table 5: Output of Vt,

n A by
75 -38.000

74 -28.627 37
39 -4.023 2
38 -3.965 2
37 -3.912 1
23 -3.410 1
22 -3.405 1
21 -3.400 0
1 -3.400 0
transition probability of emergency  system as

shown in Fig. 5.

As shown in Fig. 5, after the probability transition
through 14 unit periods, the probability distributions of
Tension Situation and Steady Situation come to steady
distribution, whenP (X, =1)=0.25,P (X, =2)=0.75and
maximum planning stopping time , = 75.

Stage 2: Deciding the optimal stopping time of emergency
condition:

»  Calculating the optimal termmation time 1 based on
the optimal stopping criterion of Standard 1. Tt is not
necessary to perform iteration calculation to solve
the key variable of optimal stopping r* by Eq. 20, but
N =75 can be directly substituted into Eq. 23 to get
™ =27.59. According to Standard 1, it is not possible
to make decision on the termmation of emergency
condition in the first 27 days, until the first day when
the time efficiency M comes to the maximum value
after 27 days (i.e., the mean time taken for demand
satisfaction M, comes to the minimum value), then it
is the time that the emergency condition can be
terminated. This M 1s the maximum value relative to
those before, but not the absclute rank. Therefore,
the highest probability to terminate on the first day
when M comes to the maximum value after 27 days is
0.276

+  Calculating the optimal termination window (a, b)

based on the optimal stopping criterion of Standard
2. A program is set up according to the algorithm of
Standard 2, outputting the results of stumulation as
following (Fig. 6 and Table 5)
As shown in Fig. 6, as ; decreases and V, increases,
the corresponding t, gets higher rank and V, comes
to the maximum value when t, = 1. As shown in Table
4, the time sequence corresponding tot, = 115 {22, 23,
..., 37%, which indicates that the optimal stopping
time for the termination of emergency condition
should be chosen within (a, b) = (22, 37) and
optimal termination time is the time corresponding to
the value of ,; with the highest rank. During the first
21 days, t, = 0, which indicates that the emergency
condition shall not be terminated during the first 21
days

» Making decision on termination of emergency
condition. Based on Standard 1, it can be known that
the key variable of optimal stopping time r* = 27.59,
which means that the decision on the termination of
emergency condition should not be made n the first
27 days. Based on Standard 2, it can be known that
the optimal stopping window (a, b) = (22, 37), which
means the termination time should be chosen within
this window. For the purpose of making final
decision, Standard 2 can be applied as the
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verification of Standard 1, while each of them can be used
independently. No matter which standard is used, it is
required to find the maximum time efficiency that appears
for the first time. As everyday’s efficiency is not known
in advance, the only approach is to narrow down the
window for higher accuracy of decision making.
Methodologically, 1t 1s feasible to combme the results of
both standards: take the mtersection (int [r*], N)n (a, b),
marked as (¢, d}, then (¢, d) = (27, 37), then the window
can be narrowed down further. Theoretically, if the
maximum time efficiency that appears for the first time 1s
found, the corresponding time can be determined roughly
as the termination time of emergency condition. In
practice, the midpoint of this window can be determined
as the termination time, based on which we can arrange
and coordinate the following emergency works for higher
efficiency. Similarly, the optimal stopping time based on
cost efficiency can be decided too. If the two times
decided above are different, the one decided by time
efficiency prevails, which 1s in accordance with the
characteristics of emergency worls

CONCLUSION

Based on the stochasticity of the change of
emergency condition, this study employs Markov chain
decision-making method and Optimal stopping theory to
study the issue of the termination of emergency
condition, for which a stochastic decision model is
developed to decide the termination time of emergency
condition 1n stages. Stimulation case shows that this
method is of lugh theoretical and practical value:

*  Markov chain decision-making process is performed
to study the maximum planning stopping time N for
the termination of emergency condition. At first, the
emergency condition is divided into two situation,
namely tension situation and steady situation. Then,
three indexes (Disaster Spread, Demand Satisfaction
and Temporal Settling) are chosen to measure the
emergency condition and function expressions are
obtained by the Markov property of stochastic
variables of emergency condition to describe the
processes that these index approach steady situation
through n-step transition, in order to set up the
theoretical basis for maximum planning stopping time
N

*  Optimal stopping theory 1s introduced mto deciding
the termination of emergency condition, resulting to
two standards to solve the optimal stopping time,
which ensure to find the optimal stopping time within
(0, N). Meanwhile, two optimal stopping models are

established based on time efficiency and cost
efficiency separately, which narrow down the
window of termination time greatly

» A stimulation case is used as an example and it
proves that it is practical and feasible to estimate the
optimal stopping time by its key variable found in
(0, N), where N 1s the maximum planming stopping
time determined at first and the result s accurate

¢ There are many indexes that influence the term ination
of emergency condition, however, this study only
chooses several indexes that are easy to perform
statistical calculation, resulting to less accurate
decision for the termination of emergency condition.
At the same time, only single-factor-concerned model
15 established when Optimal stoppmng theory s
mtroduced, allowing us to decide the key varable of
optimal stopping time only, but not the time when the
key variable comes to the maximum efficiency for the
first time. The next phase of this subject 1s to employ
high-precision estimation for more efficient decision
making on the termination of emergency condition
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