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Delayed Merging Gaussian Mixture PHD Tracker with Embedded MHT
for Close Target Tracking

Yan Wang, Huadong Meng and Xigin Wang
Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China

Abstract: For multi-target tracking it is difficult to obtain target trajectories from measurements of close targets
and clutter. The Gaussian Mixture Probability Hypothesis Density (GMPHD) as a closed form solution for the
Probability Hypothesis Density (PHD) filter can easily provide track labels of targets in clutter. But when targets
are too clogse to each other, such as crossing and occluded conditions, the GMPHD tracker can’t resolve
identities of the targets which affects and even interferes with the decision of the commander. Based on the
separation distance we proposed, delayed merging GMPHD tracker 1s proposed to correctly track close targets
in clutter. Simulation results show that our proposed approach significantly improves the tracking performance
of the GMPHD filter for correctly identifying targets in close proximity.
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INTRODUCTION

It’s more and more atlractive to use Random Fimte
Set (RFS) theory (Goodman et al., 1997) to solve the
Multi-Target Tracking (MTT) problem. In the traditional
MTT algorithms, such as Joint Probabilistic Data
Association (JPDA) filter (Chang ef al, 1986) and
Multiple Hypotheses Tracking (MHT) (Blackman, 2004),
the data association problem makes up the bulk of the
computational load. However, the methods based on the
RFS theory all treat observations as a whole as well as
targets and map the tracking of multiple targets mto a
single target tracking problem. So they avoid the explicit
assoclations between observations and targets.

Among all the methods based on RFS theory the
PHD filter (Mahler, 2003) 1s still rather effective and
computationally tractable approach. There are two major
implementations of the PHD filter known as particle-PHD
filter or SMC-PHD filter (Vo et al., 2005) and GMPHD filter
(Vo and Ma, 2006) for linear Gaussian models. The
GMPHD tracker can easily determine the target
trajectories directly from the evolution of the Gaussian
mixture (Panta ef al., 2006).

However, when targets are too close to each other,
such as small angle crossing or occlusion condition, the
performance  of the GMPHD tracker degrades
significantly. Perhaps the 1dentities of the targets in close
proximity can’t be resolved by the original GMPHD
tracker. In (Panta et al., 2009) the theoretical constraints of
the GMPHD tracker are discussed and an ‘estimation-to-
track” scheme 1s applied to distinguish between the two

targets. However, the separation distance in the article is
not reasonable in multi-dimensional state space. A recent
paper (Yazdian-Dehkordi et al., 2012) proposed a novel
method called competitive GMPHD (CGMPHD) filter
employing a renormalization scheme to re-manage the
weights assigned to each target while it’s a pity to find
the CGMPHD tracker 1s still not effective for some
crossing scenes by simulation experiments.

In short, the problem of tracking targets in close
proximity hasn’t been well solved. In this paper based on
the separation distance between close targets an
improved GMPHD tracker for close target tracking and
identifying called delayed merging GMPHD (DM-
GMPHD) tracker with embedded MHT 1s proposed. When
the distance between the predicted states of two target
estimates 1s lower than some threshold, we associate the
updated state hypotheses with the distinguishable past
trajectories. Then the identity of each state hypothesis is
determmed by “hypothesis-to-track™ delayed decision
and the track hypotheses with highest scores are selected
as estimates of target states. Simulation results are
presented to demonstrate the capability of the proposed
approach.

PROBLEM FORMULATION

GMPHD filter and labeling: For linear Gaussian multi-
target models there 13 a closed-form selution for PHD
filter, called GMPHD filter. The GMPHD tracker records
the evolution of each Gaussian component and assigns
the same identity or label to mdividual Gaussian terms
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over all the branches of one tree. Assuming T, is the
number of Gaussian components at time step k-1, in the
prediction process the same labels with the existing T, ,
Gaussian compoenents are assigned to the corresponding
predicted I, components. Then, each measurement ze7,
is used to update all of the J,,-predicted Gaussian
components. Each predicted component gives rise to
1+|Z,| Gaussian components with the same 1dentity label,
where |7,] is the number of measurements. As a result, the
updated Gaussian components for every predicted
Gaussian component constitute a part of the tree
structure. All branches of a tree have the same identity
label and each branch is a possible trajectory of a target.
In order to reduce the computation load, merging the

Gaussian terms within a certain distance are very
necessary. When the means and covariance satisfy:
1 -1 1
(m? =m)* (P, ' (m? - m) < U <”

the two Gaussian terms are merged.

The merging process perhaps evolves Gaussian
terms with different labels and the label of the Gaussian
term with the maximum weight is assigned for the term
after merging. If true target estunate owns a smaller weight
when targets are in close proximity, the merged term
maybe is wrongly identified.

Drawback of the PHD Filter for tracking close targets:
For the PHD recursion derived from RFS multi-target
Bayesian filter, an important assumption that the
predicted multi-target RFS is Poisson holds (Panta et al.,
2006).

However, when two targets are close and there are
large observation noise and process noise which result in
great estimation covariance, interactions amongst targets
are non-ignorable and the Poisson assumption becomes
unreasonable.

So, when close targets are within a certain distance of
each other, the PHD filter can’t be effectively approximate
to RFS multi-target Bayesian filter and can’t distinguish
between them.

The next section will demonstrate the separation
condition between close targets for PHD filter in detail, as
well as the improved GMPHD tracking scheme.

DELAYED MERGING GMPHD TRACKER

Separation distance: Consider a situation where two
targets are in the swveillance region. Ideally the
intensity function D(x) would be represented by a sum
of two weighted Gaussians with Gaussian means m',
and m?%,;

D, (x)=wN{x;m|,P, )+ wiN(x;m},P,) (2)

For simmplicity, the covariance matrices P, for both
(Gaussians are considered to be the same.

If the weights for both Gaussians are also the same.
Proposition 1:  The intensity functon D, m (2) 1s
unimodal with the mean (m, + m})/2 1if and only ift

(mL -m; )T B (m'k - mi) <4 (3

We can prove Proposition 1 partly by reference to the
statement for the condition that the multi-target posterior
is unimodal in one-dimensional space (Goodman et al.,
1997).

In addition, we consider the conclusion on the
condition that two Gaussian mixtures D (x) have different
weights.

Proposition 2: The mtensity function D,(x) with different
weights w', and w”, in (2) is unimedal when:

wexp(—2zD)(z+1)+(z-1)=0

4
(1—22)D£1 @

Where:
w=wywi D= (m}( —m? )T P! (mL - mi)/4

From the first equation of (4) z is the function of w and D.
Then according to the second inequality of (4) we can
determine the scope of the variable D.

For the scope S of D in (4) has no analytical solution
with respect to the parameter w, we analyze the scope by
polynomial fitting the numerical solutions with respect to
w. In order to keep the fitting output not less than the real
solution S, we enlarge 5 a little, such as to S+0.04.

Finally we get the conclusion:

(m, fmi)T B (m —mj )/4 <f(w) (h

where f(w) is 4-order polynomial function of w and the
polynomial coefficients are as follows:

a=[-0.0107 0.1528 -0.8294 2.0062 -0.4132]

In order to make wx1,
getw=wl/w. . Furthermore f{w)|,,., =1.

From the separation condition as (2) and (4) we know
for the PHD filter the separation distance demonstrating

: 1 2 1 2
ifwl>wl, w=w /w. else we
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whether two targets are too close is the Mahalanobis
distance of two state estimates weighted by the inverse of
the covariance matrix. If estimates of two targets satisfy
(5), the PHD filter can’t distinguish between them.

However, in simulation the merging threshold U = 4
makes the merging condition as (1) precisely the same to
the separation condition as (3). So perhaps the estimates
of two close targets have been merged into one Gaussian
with one tag and the same identity is assigned to the
subsequent tracks. In order to make sure that the state
estimates of two close targets wouldn’t be merged and
obtain target trajectories with the right identities, we
propose our DM-GMPHD tracker.

DM-GMPHD tracker: We assume to have recorded all
the estimates of the absolutely distinguishable targets
meluding the states estimates %~ and firstly propose to

construct a root node set X!, where for every estimate
m, e X, there at least one other m!, (= j) for which the
predictions of i andm], satisfy (5), so do the updated
terms. Then keep all kinds of relatively high hypothesis
generated from new observations and the estimates from X,
and associate these hypotheses with the recorded
estimates forming ‘hypothesis-to-track’ trees.

The scheme includes three steps:
Step 1: Association launch condition: In PHD filter, we
get all the predicted term m., and updated
terms mi, (z) of the state estimatem; , =X, , with
the tag T
Calculate:

T
i ; 1 i ;
Dpfe = (mk/krl - mk/m) Puss (mk/m *mk/k,1)

for the arbitrary i-th and j-th estimates from the set of
target state estimates X,,, the weight ratiow=w', v,
and just analyze the predicted terms when D, <U, where
U, 1s a given threshold used to select relatively close
targets. Then we judge whether the predicted terms
(ml, andmi, ) or updated terms (mi,(z)andmi, (z))
satisfy (5) and make marks in the state estimates
my, andm{, . If different measurements are too close
which results in that updated terms of m',, and m', , both
satisfy (5) and, we also make marlks in the state estimates
m',, and m',, The selecting threshold U makes the
improved GMPHD tracker not to start the association
scheme when two targets can be distinguished.
Subsequently keep the updated terms of the marked
estimates not merged and all the relatively high

hypotheses are outputted.

Then stop executing the merging process for all the
updated terms of the marked state estimatesX., and
record the comresponding output. The marked state
estimates from X', become the roct nodes of track
hypothesis trees.

Step 2: ‘Hypothesis-to-track’ association: The identity
of a track hypothesis is given by the label of the
state estimate inX. | as the initializing track. The
score of each track is represented by its LLR that
is imitialized withlog(wi ). We propagate the
mean and covariance of each track hypothesis
as mi,,=F . m., and . For each hypothesis
branch @} (je T,) of the imtializing track its LLR
1s incremented as:

LLR},-LLR, , +log NG i, , B+, ) (6)
Step 3: End condition: Supposing at time step k
i, andm] as the track hypotheses of the highest
LLRs are selected, we need to judge whether the
two targets are already enough far from each
other. In order to make sure that not only the
two targets can be distinguished at current time
step but also the next step, we propose to
consider the separation distance of m. and m/ as
well as the predicted terms and the imaginary
updated terms. Only when three end conditions
become true we stop the association scheme and

output the hypothesis tree of the highest LLRs
The first and second conditions are, respectively:

(i — i} ) B (s — il ) > 4 (7
(rﬁi(+1fk - ﬁ‘li«mc )T f>1;1+1fk (rﬁilc+lfk - m1j<+1fk) >4 (8)

Now we review the update process. For an imaginary
observation z, from:

- L T e .
(mk+1(21) -1, (21)) Po (mkﬂ (z,) -y, (21))>4

we get:

o ~ T
(mkﬂik - m1J<+1fk) {I- KkH HkH)T' (9)
f’l;l-l I- Kk+1Hk+1)(m;c+lfk - mi+1fk)>4

where K, 15 gain matrix.
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Making the problem simplified, for the updated terms
generated by two imaginary observations z and z, to one
predicted Gaussian, suppose:

172

112 (i)
L.z, =Hig, , + GlekH Lia

K nd 2 By T

— H®»
z,=H;, . + GZ,R

where, H is measurement matrix, R,,, 18 covariance of
measurement noise and I ., is an n-row vector of which
each element 1s one, we get the third end condition
mcluding (9) and:

Az = max(abs(H(m,,,, —m!, i -o R'I_).0)

AZK PR, AZ=4

(10)

where 0, 1s a small threshold describing the deviation of
umaginary observations and predicted observations.

Once we end the association scheme, we need to
re-manage the weights of selected hypotheses to make
GMPHD filter work regularly at subsequent time steps,
even to delete the non-selected branches.

SIMULATION RESULTS

For illustration purpose, we consider a two-
dimensional scenario. The moving model and the
measurement model are the same as that in (Panta et al.,
2006} and (Yazdian-Dehkordi ef al., 2012).

The general parameters using the GMPHD filter
include the pruning thresheld T, = 107 merging
threshold U = 4, weight threshold wo,, = 0.5 and maximum
number of Gaussian terms T, = 200. In addition, the
selecting threshold U, = 50, U, 16 and 0,,, = 0.15 .

Scenario 1: There are two targets moving in straight
paths with the same velocity in x axis. We set the standard
deviation of the process neise 0, = 0.5 (m/Sec’) and the
standard deviation of the observation noise ¢, = 1m.

Figure 1 shows an example of two crossing targets
with speed deviation Av = 1.2 m sec™". Results presented
mn Fig. 2 show that the original GMPHD tracker fails to
correctly keep separate 1dentities of the two targets whle
by our association scheme DM-GMPHD tracker can
correctly keep the identities of the two targets as shown
in Fig. 3.

We also respectively apply the GMPHD tracker with
‘estimate-to-Track’ association in (Panta et al., 2006) and
the CGMPHD filter in (Yazdian-Dehkordi et al., 2012) to
track the two targets in scenario 1. The results of both
schemes are absolutely the same as the results of the
original GMPHD tracker as shown in Fig. 2.

Table 1 demonstrates the rate that targets are
correctly  1dentified over 200 smnulations for two
targets with different speed deviations and shows that
we have achieved the goal to obtain enough high
accurate rate.

True target and observation

30 L
20F . ,:4"""]""
1o
~Target 1
ok el — Target 2
g e Observation
= vt
-10f L
200
-30p™"
40 . . . . . .
-250 -200 -150 -100 -50 0 50 100

x(m)

Fig. 1 Crossing target trajectories with target *1°(dashed
line) and target *2’ (solid line).
GMPHD tracker output
30 ' ' ' ]
20 ]
wf .
E o <4
B T TNl —Target 2)
; N
-10F —_,r’ ‘-\‘_\
2 N
..I", ‘51\‘\’
-30F 1
ok . . . . . .
250  -200 -150 100  -50 0 5 100
x (m)

Fig. 2: Trajectories (wrongly identified) given by the
original GMPHD tracker.

DM-GMPHD tracker output

. y (m)

_49250 -200 -150 -100 -50 0 50 100

x (m)

Fig. 3: Trajectories given by DM-GMPHD tracker

Table 1:  Accurate rate of the original GMPHD tracker and the improved
scheme for different speed deviation
Speed deviation The original DM-GMPHD
(msec™') GM-PHD tracker CGMPHD tracker
Av=1 0.03 0.435 0915
Av=1.2 0.075 0.54 0.945
Av=14 0.165 0.725 0.96
Av=1.6 0.3 0.8 0.96
Av=18 0.4 0.87 0.97
Av=2 0.58 0.925 0.97
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Scenario 2: There are three targets moving in straight
paths. We set the process noise 0, = 7m and the
observation noise p,, = 0.99. Each target has a survival
probability of 0, = 7 m at each time step.

Figure 4 shows the observations of three crossing
targets and clutter at each time step. The detection
probability and the mean of clutter are set to 0.99 and
2x10" m .

As shown in Fig. 5 target 2 and target 3 are assigned
the same tag after crossing by the original GMPHD
tracker. If we just keep the label of the estimate with the
strongest weight when multiple estimates have the same
label, the result is shown in Fig. 6. The CGMPHD tracker
also fails to correctly keep the identities of target 2 and
target 3 as shown in Fig. 7 while by our association
scheme DM-GMPHD tracker can correctly keep the
identities of the three targets as shown in Fig. 8.

To study the performance of our proposed method
with higher uncertainties, we provide the results of the
three trackers m scenario 2 with various clutter rates and
probabilities of detection. The mean Number of Target
Estimation Error (NTE)( Yazdian-Dehkordi et ¢l., 201 2) and

[ - observation (target)

50 (a). ) T L Clutter 1.
e R Py
- O Wt 5 T Y

50! 1 1 1 1

SO0z i % 0% Monol e X
g x:ﬁ‘ !.ﬁf!ﬂcﬁ: o lx b
> OfamX X e obkn, xR R ;

H I T 3 L B - Observation (target)

50 ;:?'B"?- I’°‘ ¥ :)‘:Qﬂ'l""’?’;’& * Clutter

0 20 40 60 80 100
Time step

Fig. 4: Observations of three crossing targets and clutter
at each time step

GMPHD tracker output (1)

300} Target 3
3~ T Target 2
o e Target 1
100} e
2
o&

y (m)

of .,-...~._.....,--—..,......-\..¥_,-\Q‘E ST
2 3 NI
V

-100f -~
-200F //
-300f

-500 0 500

Fig. 5. Trajectories given by the original GMPHD tracker
(After crossing there are two estimates with the
same label)

the mean optimal subpattern assignment (OSPA)
(Schuhmacher et al., 2008) are computed at each time step
for 500 runs and then over time.

Fig. 9-12 show the averaged NTE, OSPA and the
accurate rates of tracking three targets for scenario 2 over
500 runs. For different clutter rates, the probability
of detection pp1s set to 0.99 and for different probabilities
of detection the clutter rate is fixed at A.=2x10""m =

GMPHD tracker output (2)
[ Target 3 "]
300 ¢
3~ |- Target 2 ﬂf‘*“‘
200 ““*““Target 1 *‘f i

Target 4 f,\“’“
100 - 1
L f-\"‘-.auﬁd\nn)—anﬁ-%ﬁww 4
2 ~
-100f wf""r Ny 1
ﬂ"' N,
-200F S 1

- .

y (m)
(=]

-300F 4

-500 0 500
x (m)

Fig. 6: Trajectories given by the original GMPHD tracker
(the original identity is assigned to the branch
with the strongest weight)

CGMPHD tracker output

300 Target 3
3 . T Target 2

200} e Target 1 r'{,',n i
L o

y (m)

x (m)

Fig. 7: Trajectories given by CGMPHD tracker

DM-GMPHD tracker output

300 Target 3
3 e T Target 2
»*

200 e Target 1 !’& i
100 "

By

é 0 .p-~—*‘w\..4-._-hﬂ-un-y\-uK.{:’"'\v-’u.&..u._wl E
> 2 *
-100 /
-200 "
-300 ,rff
-500 0 500

x (m)

Fig. 8: Trajectories given by our proposed DM-GMPHD
tracker
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-
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Fig. 9: Averaged NTE and OSPA of tracking three targets
with different clutter rates.
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Fig. 10: Averaged NTE and OSPA of tracking three
targets with different probabilities of detection.
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Fig. 11: Accurate rate with different clutter rates

Fig. 9 and 10 illustrate that our proposed DM-GMPHD
tracker has the lowest estimation errors.

As shown in Fig. 11 and 12, the CGMPHD tracker has
substantially improved the performance of the GMPHD
tracker while our proposed approach has a higher
accurate rate in all configurations. For different clutter
rates, the accurate rates of the DM-GMPHD tracker are
greater than 90%. For different probabilities of detections,
the accurate rates of the DM-GMPHD tracker are greater
than 80%.

1
> 4
038
g 06 ¥
8 —&—GMPHD
S CGMPHD | _|
304 —6— DM-GMPHD

0.2 /a

0.7 0.75 0.8 0.85 0.9 0.95 1
Probability detection

Fig. 12: Accurate rate with different probabilities of
detection

CONCLUSION

This study presents an improvement on the GMPHD
filter for close target tracking and identifying. We analyze
the separation condition of distinguishing between close
targets and propose to apply a ‘hypothesis-to-track’
association scheme when the distance between the
predicted states of target estimates is within the
separation distance. The simulation results show that the
proposed delayed merging GMPHD tracker has a better
performance in identity confirmation than the original
GMPHD filter as well as the improved schemes in existing
articles when tracking closely-spaced targets.

As the future work, our research plan 1s to apply our
approach m more scenarios combining the scheme of
re-managing weights in CGMPHD filter.

ACKNOWLEDGMENT
The authors would like to thank for the support by

the National Natural Foundation of China
(No. 61201356).

Science

REFERENCES

Blackman, S.5., 2004, Multiple hypothesis tracking for
multiple target tracking. Aerospace Elect. Syst.
Maga., 19: 5-18.

Chang, K.C., CY. Chong and Y. Bar-Shalom, 1986. JTomt
probabilistic data association in distributed sensor
networks. Trans. Automatic Contr., 31: 889-897.

Goodman, I, R. Mahler and H. Nguyen, 1997.
Mathematics of Data Fusion. Kluwer Academic
Publishers, Boston, pp: 248-252.

Mahler, R., 2003. Multitarget bayes filtering via first-order
multitarget moments. Trans. Aerospace Electr. Syst,,
39:1152-1178.

7213



Inform. Technol. J., 12 (23): 7208-7214, 2013

Panta, K., BN. Vo and D.E. Clark, 2006. An efficient track

management scheme for the gaussian-mixture
probability hypothesis density tracker. Proceedings
of the 4th Intermational Conference on Intelligent
Sensing and Information Processing, October 15-
December 18, 2006, Bangalore, pp: 15-18.

Panta, K., DE. Clark and BN. Vo, 2009. Data asscciation

and track management for the gaussian mixture
probability  hypothesis  density  filter.  Trans.
Aerospace and Elect. Syst., 45: 1003-1016.

Schuhmacher, D, B.T. Voand BN. Vo, 2008. A consistent

metric for performance evaluation of multi-object
filters. Trans. Sig. Process., 56: 3447-3457.

Vo, BN. and W.K. Ma, 2006. The Gaussian mixture

probability hypothesis density filter. IEEE Trans.
Signal Process., 54: 4091-4094.

Vo, BN, S. Singh and A. Doucet, 2005. Sequential Monte

Carlo methods for multi-target filtering with random
finite sets. IEEE Trans. Aerospace Electronic Syst.,
41:1224-1245.

Yazdian-Dehkordi, M., 7. Azimifar and M.A. Masnadi-

7214

Shirazi, 2012. Competitive Gaussian mixture
probability hypothesis density filter for multiple
target tracking in the presence of ambiguity and
occlusion. TET Radar, Sonar Navigation, 6: 251-262.



	ITJ.pdf
	Page 1


