http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 12 (23): 7260-7264, 2013
ISSN 1812-5638 / DOL 10.3923/1t).2013.7260.7264
© 2013 Asian Network for Scientific Information

A Novel Improved Data Load Balancing Algorithm for Hadoop

VKun Liu, 'Gaochao Xu, *Tingmei Wang and “Jun’e Yuan
'College of Computer Science and Technology, Jilin University, Jilin,
Changchun, 130012, China
“College of Applied Science and Technology, Beijing Union University, Beijing, 102200, China

Abstract: This study 1s designed to solve the problem of Hadoop data load balancing algorithm. A big
difference arises in response time for similar files as it balances the data according to the space usage of each
node and doesn't handle the factors like processing power, bandwidth and files' access frequency. This study
proposes a novel load balancing model based on the factors of files” size, files” concurrent access time, files’
access frequency, nodes' processing power, bandwidth and nodes’ available storage space. Experimental
results reveal that the new model can not only guarantee the storage space load balancing, but also maintain

similar response time for similar files.

Key words: Hadoop, load balancing, cloud computing, cloud storage

INTRODUCTION

As an application program for large data, Hadoop has
had many relatively successful applications such as
Yahoo and Facebook (Lin, 2012). Hadoop (White, 2009),
originating from open source network search engine
Apache Nutch, 1s a widely used file search data
developed by Doug Cutting-pache Lucene founder
(Chen and Zheng, 2009). Tt is a distributed systematic
framework, under which users are able to develop
distributed programs without understanding distributed
basic details. Tt is famous for MapReduce and its
distributed file system HDFS; meanwhile, there are many
subprojects providing supplementary
(Dean and Ghemawat, 2004).

Due to the random storage of blocks in Hadoop’s
HDFS and with the adding and deleting of cluster nodes,
the cluster is prone to load imbalance (Borthakur, 2008).
A program m Hadoop
(L and Dong, 2012). Manually calling this program can
process load balancing for the whole cluster. Balancer

service

called BRalancer exists

works like, adding up the average storage space utilization
rate of Datanodes on all racks; based on the average
utilization rate dividing Datanodes into fouwr categories
and forming fow chain lists which are
aboveAvgUtilizedDatanodes, over Uhtilized Datanodes,
below Avg Utilized Datanodes and under Utilized
Datanodes, whereby data balancing on the Datanodes
take place (Caibinbupt, 2009). Balancing happens within
the rack firstly and then spreads between racks.

After a Hadoop cluster has run for some time, the
nodes” dynamic adding and deleting can cause data load
imbalance. The newly-joimng nodes need load balance
procession (Lin and Liu, 2012). Good data load balancing
strategies are capable of effectively avoiding bottlenecks,
such as network load distribution mnbalance, data flow
congestion, long response time, etc. and raising
implementation efficiency. Balancer, a data load balance
program provided by HDFS, can balance storage load on
each node (Liu et al., 2012). However, Hadoop’s load
balancing algorithm just considers storage
according to the utilization rate of which carries out load
balancing.

space,

IMPROVED HADOOPFP DATA LOAD BALANCING
MODEL

Problem description: In cloud data load balancing,
Hadoop only considers the factor of storage space.
However, many other factors need considering. For
example, when storage utilization rates are equal on
Machine A and B, if files on Machine A are accessed
frequently and visited by many users at the same time,
thus, with the same utilization rate it 15 obvious that the
load on Machine A is heavier than that on Machine B.
Take another example. For Machine A and B, if the
bandwidth of the net where A stays 1s broader than that
of B, it 1s clear that A’s throughput is larger. Even if the
space utilization rates are the same, with better capability
A can provide more services. Therefore, the following

Corresponding Author:
China

Gaochao Xu, College of Computer Science and Technology, Jilin University, Jilin, Changchun, 130012,

7260

Inform. Technol. J., 12 (23): 7260-7264, 2013

model is proposed as a proper data load balancing one in
cloud date storage, comprehensively considering all the
previous factors.

Analysis of influencing factors : File access (read) times
(at): The more one file has been accessed, the more
probably it will be accessed again, consequently the
heavier the load it occupies 1s:

+ Concurrent file access (read) times (ct): the more one
file has been accessed, the heavier the load it
occupies 1s

+ File’s idle time (1): if one file has not been visited for
a long time, its load will gradually decrease

¢ TFilesize (1): the bigger the size, the heavier the load

* Duration for each access (di): the longer the duration,
the heavier the load

* Bandwidth (W) while serving the same amount of
data, the broader the bandwidth is, the lighter the
load will be

¢ Current available storage space in servers (L): while
serving the same amount of data, the larger the space
is, the lighter the load will be

CPU load capacity (C) and memory (M) of servers:
while serving the same amount of data, the better the
server is, the lighter the load will be.

Related definitions

Definition 1: Load of file 1 in the server j 1s accessed for
the tth time:

e(F. 1) = e (L, t-1)* (1-0') 41, * 1
(d,+d,+..+d,)i*d)

¢ oisasetvalue

* 113 the time difference between this load adjusting
and last load adjusting

*] 1s the number of the server, 1 is the number of the
file and t is the time of access

¢ ¢ s the load of the No. j server

¢+ fisthe No. | file

¢ ¢(f, 0) = 0, meaning when the file 1s not accessed, the
loadis O

* What thus formula describes 1s the load when the file
is accessed for the t* time. Only when the file is
accessed, can this load be changed

« g, t-1)*(1-0" indicates that if the file has not been
accessed, its load will gradually decrease, not fixing
on one value, until the value approaches 0. The load
decrease 1s related to the time when it has not been
visited. The longer it has not been visited, the larger
the load decrease 1s:

1 (dd . +d /(1 %d)

Tlustrates that each visit will increase the file’s load.
The load increase has to do with file size, concurrent
access times and duration for each access. 1 1s the size of
file i; m is concurrent access times; d,, d,, , d,are each
concurrent access duration of m times; | is the average of
all file sizes; d' is the average of time all files accessed.
Take the ratio of the file size, access time and average
access time as the load increase.

The file load will be adjusted according to
formula-each time it is accessed.

Definition 2: Load of long-time files which are not
accessed for a long time at the time of T:

e(L,) = e(f, T) = e(f, T-AD*(1-0%) (2)

s tis the time difference. Other parameters refer to Eq.1

» Every other [lt automatically adjust each file’s load,
to decrease the load of files not accessed for a long
time. The adjusted file load is taken as the load of
time t (the last time)

¢ This formula only applies to adjusting files not being
visited during (It

Definition 3: Total load of server j:

E, =Y e, t) (3)

Hereinto, n 18 the number of files in server .
Definition 4: Relative load of server j:

P=E*K, W /W +K ~L'/L)
+K *C/C + K, *MT/M))

4

» W is the server’s average bandwidth, L' is the
available average storage space, ' is CP1’s average
processing capacity and M is the average memory

» C,and M, are respectively server j’s CPU processing
capacity and memory, expressed with measure value
in this Eq. They are ranked according to CPU and
memory’s capacity. C and M are determined by C,
and M, while C, and M, are marked by the
administrator on the basis of equipment condition

» L, is the server’s available storage space and W, is
sever j’s bandwidth

» Equation 4 discloses that the ligher the CPU’s
capacity, the bigger the memory, the broader the
bandwidth and the larger the available storage space
is, the lighter the relative load will be

7261

Inform. Technol. J., 12 (23): 7260-7264, 2013

« K. K K., and K, respectively refer to the coefficient
of fouwr determiners, namely the bandwidth, storage
space, CPU capacity and memory. K 4K K +K =1.
The mamnly considered factor changes by just
altering the relative coefficient, e.g., if the bandwidth
is the only factor considered in measwring server’s
relative load, set K, =1, K, = K, = K_ = 0; if the
equipment capacity 1s mainly taken into
consideration, set K, =0, K, =K. =05K,_ =0

IMPROVED ALGORITHM

The principle of the improved algerithm is
constructing two queues as Q and S. The queue Q
contains the servers whose load over average load and
the queue S contams the servers whose load below
average load. We move files from Q to S according a
certain regulation. The detailed algorithm is shown in
Fig. 1.

EXPERIMENTS

The testing environment consists of three racks as
llustrated in Fig. 2, including Rack A, Rack B and Rack C.
There is one computer in Rack A, namely Al, three
computers in Rack B, namely Bl, B2 and B3, while two
computers m Rack C, namely C1 and C2. C1 | Bl and Al
are configured as follows: 1.3G CPU, 2G memory and
Ubuntu 10.04 OS. C2 and B2 are configured as follows:
2.0 G CPU, 4 G memary and Ubuntu 10.04 OS. B3 is
configured as follows: 3.2G CPU, 4 G memory and Ubuntu
10.04 OS. All these computers have a 8G hard disk. Rack
A and C have a bandwidth of 10M/S, while Rack B
100M/S. Based on the configurations of each node, their
CPU processing capacities are ranked as 3,3, 4, 5, 3, 4 and
memory are ranked as 3, 3, 4, 4, 3, 4. In the definition 4, the
values of K, K, K, K, are 0.4,0,0.3,0.3.

In experiments, A, is used as client for storing data,
which contains 100 files of 1 M, 100 files of 2 M, 100 files
of 30, 100 files of 5M, 100 files of 10 M, 10 files of 15 M,
10 files of 20 M, 10 files of 30 M, 10 files of 40 M, 10 files
of 50 M, 4 files of 200 M, 2 files of 500 M and 2 files of 1G.
The mmitial space usage ratio 1s shown in Table 1. The first
replications of all files are stored on A, the other two of
all respectively on B, B,, B, C, and C,. Now the load on
each datanode is obviously imbalanced. After storage
finished, respectively visit 5 files of all sizes in C,.
Response time situations are revealed by the before-
balancing line chart from Fig. 3 to 6. The abscissa refers to
the files visited, which are numbered as follows: F1M]1 to
F1MS5 for files of 1M, F2M1 to F2MS5 for files of 2M, F3M1
to F3MS5 for files of 3M and the like. The ordinate refers to

Calculate each server’ srelativeload j gnd
total averageload P;

l

Put the servers under the condition F]>P’ into
QueueQ in descending order

I

Put the servers under the condition A<P into|
QueueSin ascending order

>

Select the first server fronQueueQ ask, and
al filesin k form QueueH according to the
files, loadin descending order

>

A
Select The first unmarkedfile from Queue
H asu and make amark on u

Delete theload of

ufrom xand uisinwriting state
regaintheinitial

valueof Px N

Select the firstunmarked server fromQueueS
asx and make a mark on x

l

Add the load of u to x and recalcul ate the
load of x as Px

< pomr >

N

Remove u to x and delete u fron QueueH

!

Recal culatePxand Pk

o>

Clear all
marks of %
filesand
servers Delete x fromQueueS
N

delete k fromQueueQ

Fig. 1: Flow chart

7262

Inform. Technol. J., 12 (23): 7260-7264, 2013

Rack 2

Al

Fig. 2: Experiment topological graph

? += Before balancing N ¥
6 N __--.)
: = Hadoop agorithm m—; o ‘:\H.-"r-
4 Improved agorithm ¥ y
1T OO Vs
¥, '
1#'*’.\"*"_' =
N T AN T D ANDID A NOTWOAND T O
S=S=2S2S2=2=22=2=2=2=2=2=2=2=2=2=2=2=2=2=2=2=2=
AT T TAINNNNNOOOTOOOOHOOHHSSS 38
LU LW W = =

Fig. 3: Response time when accessing files of 1, 2, 3, 5
and 10 m

35 #= Before balancing
30 | —m—Hadoop algorithm - l\"ﬂ\

gg Improved agorithm -)_._“/'x""_ " \:‘
-_‘:.}{")

0 l.-u*:,ﬁf'.‘""‘

B
)T

AN SO NS N AN TN A NM S
Sicrasscscs2szzz8332
= " A NN NNNOOOOHOOHO S S F 5
I I I I I e e e T T N T

—

Fig. 4: Response time when accessmg files of 15, 20, 30

and 40 m

the response time, whose unit 1s second. The figures
demonstrate that before balancing, the response time
varies from very short to very long. Though this has to do
with file sizes, small files’ response time 1s not necessarily
shorter than that of big files, sometimes even longer, e.g.,
F1M3’s response time longer than that of F2M1, F5M4
response time longer than that of F10M]1 and so on. The
reason for such a situation is that when visiting these files
from datanode C,, since they are stored on different
nodes, response time has to be nfluenced by such factors
as bandwidth, datanode’ processing capacity, etc.

iy

Rack 3

Cc2

Table 1: Initial space usage ratio

Before hadoop algorithm

Data node Hard disk (GB) Utilized (GB) Utilization ratio (%6)
Al 8.0 7.48 93.50
Bl 80 4.06 50.75
B2 8.0 4.08 51.00
B3 8.0 4.02 50.25
C1 80 1.26 15.75
c2 8.0 1.24 15.50

Table 2: Space usage after hadoop algorithm
Before hadoop algorithm

Data node Hard disk (GB) Utilized (GB) Utilization ratio (%)
Al 8.0 4.12 51.50
Bl 80 4.12 51.50
B2 8.0 4.10 51.25
B3 80 4.12 51.50
Cl 8.0 2.8 35.50
Cc2 8.0 2.8 35.50

Employ Hadoop’s load balancing algorithm to
balance these datanodes. Space usage ratios are shown
in Table 2 after load balancing finished, respectively 51.5,
51.5, 51.25, 51.5, 35.5 and 35.5%. Judging from space
usage ratio these datanodes definitely have been
balanced. When accessing 5 files of all sizes from C1, the
response time can be seen in Fig. 3 to 6. We can get the
conclusion is that the response time remains basically the
same as that before balancing, that 1s, small files
response tume 18 longer than that of big files in most
cases.

Adopt the load balancing algorithm in this study to
balance these datanodes. Space usage ratios are shown
in Table 3 after load balancing fimshed, respectively 36.25,
42.5,55,59.75,33.75 and 49.5%. Tudging from space usage

7263

Inform. Technol. J., 12 (23): 7260-7264, 2013

160 += Before balancing

140 - 8
120 == Hadoop agorithm P e
100 Improved agorithm P |
80
60 F— "
40—yl
20
0
- o~ ™ <) o N ™ <
= = = > = C§> g g g
i Y P Y P] 3 s 8
S INd N I
g w i w

Fig. 5. Response time when accessing files of 50 and

200 m
100 Before balanci
. ore balancing "~
80 = Hadoop agorithm B ——— = -
600 Improved algorithm = i
400 — e
200 2
0
F500M 1 F500M2 FIG1 FIG2

Fig. 6: Response time when accessing files of 500 and 1 g

Table 3: Space usage after this study's algorithm
This study’s algorithm

Datanode Hard disk (GB) Utilized (GB) Utilization ratio (%)
Al 80 2.90 36.25
Bl 80 3.40 42.50
B2 80 4.40 55.00
B3 8.0 4.78 59.75
Cl 80 270 3375
c2 8.0 3.96 49.50

ratio these datanodes definitely have basically balanced
loads. When accessing 5 files of all sizes from C1, the
response time 1s reflected by the line chart of after the
load balancing algorithm in this study from Fig. 3to 6. Tt
can be seen that the response time 1s roughly in
accordance with the size of files, that i1s, small files’
response time is short while big files’ response time is a
little longer.

Comparing the experiment results of two algorithms,
we can conclude that this study’s algorithm succeeds in
guaranteeing that small files” response time is short,
which can save small file visitors® waiting time; from the
angle of space utilization ratio, although Hadoop
algorithm makes the load on each datanode more
balanced, yet this study’s algorithm can also realize the
balance of storage space load.

CONCLUSION

This study analyzed Hadoop load balancing
algorithm and proposed an improved model focusing on
Hadoop algorithm’s limitation that it only handles storage

space load balancing. The new model in this study can
not only manage storage space load balancing, but also
incorporate factors like file size, file visit frequency,
datanode’s CPU processing capacity, datanode’s
memoery, bandwidth, etc., which enables the datanodes
with better capacity to burden more load, consequently
enswring the consistency of each user’s response time.
Experiments proved the effectiveness of the algorithm mn
this study.

ACEKNOWLEDGMENTS

The study is subsidized by Beijing City Board of
Education Science and Technology Project
(SQKM201211417008) and Funding Project of
Competence Development Program for Beying VET
Teachers.

REREFENCES

Borthakur, D., 2007. The hadeoop distributed file system:
Architecture and design. https://hadoop.apache. org/
does/r0.18.0/hdfs design.pdf

Caibinbupt.,, 2009. Hadoop source code analyses.
http://caibibupt javaeye.com/blog/318949

Chen, K. and WM. Zheng, 2009. Cloud computing:
System instances and cwrrent research. I. Software,
20:1337-1348.

Dean, J. and 3. Ghemawat, 2004. MapReduce: Simplied
data processing on large clusters. Proceedings of the
6th Symposium on Operating System Design and
Implementation, (OSDI'04), ACM Press, New York,
pp:137-150.

Lin, W.W. and B. Liu, 2012. Hadoop data load balancing
algorithm based on dynamic broad band distribution.
South China Univ. Technel J. Nat. Sci. Edn,
40: 42-47.

Lin, WW., 2012. An improved hadoop data placement
strategy. South China Univ. Technol. I. Nat. Sci.
Edn., 40: 152-157.

L, K. and L.J. Dong, 2012. Research on cloud data
storage technology and its architectwre
implementation. Proceedings of the International
Workshop on Information and Electronics
Engineering, March 10-11, 2012, Harbin, pp:133-137.

Liu, K., L. 3ijao and HY. Zhao, 2012. Research and
improvement of hadoop's cloud load balancing
algorithm. J. Microelectron. Comput., 29: 18-22.

Whate,T., 2009. Hadoop: The Defimtive Guide. O'Reilly
Media, United States of America, pages: 528.

7264

	ITJ.pdf
	Page 1

