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Abstract: We study the Stochastic Resonance (SR) in the maximizing network with threshold devices and get
results on noise enhancing mnformation transmission. Here the input signals are discrete and the results may
be useful for code symbols transmission. With proper thresholds, mutual information between mput and output
signals increases at first as (additive or multiplicative) noise intensity increases and there is a maximal value
when noise intensity reaches the optimum. In addition, larger number of threshold devices leads to better
efficacy of SR and the maximum of mutual information goes upwards which means a further enhancement of
information transmission. At last, we give the optimal combimation of additive and multiplicative noise intensity
for the maximal mutual information in the global region. In this case, the efficacy of information transmission

is improved the most.
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INTRODUCTION

The study of Stochastic Resonance (SR) has lasted
for a long time and many results have been achieved
(Collins et al, 1995; Tung, 1995, Gammaitoni, 1995;
Bulsara and Zador, 1996; Gammaitom et al., 1994,
Gammaitom et al, 1998, Stocks, 2001a, 2001b;
McDonnell et al., 2002). On one hand, different forms of
noise are chosen and added into systems to improve
systems’  performance or enhance information
transmission (Bulsara and Zador, 1996; Stocks, 2001b;
Wang and Wu, 2005). On the other hand, SR in many
kinds of models has been discussed systematically,
too (Gammaitorn, 1995; Stocks, 2001a, 2001b;
McDonnell et al., 2002). And there are many applications
exploiing SR such as sonar arrays, digital-to-analog
converters (Stocks, 2001 a; McDonnell et al., 2002) and so
on.

However, many researches on SR have been
assuming there 13 mere additive or multiplicative noise in
systems (Stocks, 2001a, 2001b; Nikitin et al, 2007).
Recently, attention is also paid to the situation where
additive and multiplicative noises exist at the same time
(Guo, 2009; Lv, 2013), because both of the two may affect
systems simultaneously. And we discuss SR with both
additive and multiplicative noise, too.

MODEL

In our study, we consider a maximizing network of
threshold devices whose 1nput signal 1s discrete. And our

results may be useful for coding and the transmission of
symbols. The maximizing network of threshold devices 1s
such a multi-threshold model as Fig. 1 shows.

There are N threshold umts. And they are subject to
the same input signal and independent additive and
multiplicative noises.

The input signal x is discrete, whose value is among
f-m,-m+1,.... 0, m-1,m} And A is a parameter dictating
the value of the deterministic signal component. 1), and
T =1, 2,.., N) are mutually independent standard
Gaussian noise, ie., {1, () andwheni# j,{n, n} =0,
(. £ = 0. And then the input to each threshold device is:

Z = A+ An, + MEx (1)

where, A and M are the intensity of additive and
multiplicative noise.
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Fig. 1: Maximizing network with N threshold devices
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In each threshold device, U acts as a quantization
step determining the interval between two adjoining

thresholds and there are 2 m thresholds from (,HHLJU
2

to [m - lJU . When mputting z, the output of each device
2

v, can be obtained as follows (Gammaitoni, 1995):

-m zj<(—m+%)U
y. =dk{-m<k<mke Z) (k—%)U<zi<(k+%)U (2)

1
m Z = {m—-—yU
= 2)

The output of the system y is the maximal v,

=maxy..
¥ 14N %

Since, 1, and {, are mutually independent, the
conditional probability density of z 1s Gaussian with a
mean of Ax and a deviation of A*+M*x* for a given x:

- 1 (z o) 3
RN e M U

And according to Eq. 2, probability of each v, with a
determinate x can be calculated as this: for -m+1<k<m-1:

Ply, =k|x)=P({(k-05)U <z <(k+05U|x)
(k+0. 53U

i P10, 4
(k+0.5U - ix (k- 05U~ Ax

= 0.5¢rf
¢ (JE(A2 M) J2HAT MR

) 0.5erf(

Fork=m:

P{y,=m|x)=P(z, > (m - 0.5U | x)
— 0.5 0.serp(P_ 0T A% (5)
AT+ M)

and for k = -m:

P(y,=—m|x)=P{z, < ~m+0.5)U|x)
m+ 05U - ax (6)

1/2(A2 + M)

=0.5+0.5¢erf {

where, erf 1s an error fimction defined as:

af(x) = % exp(—t*)dt

Noting that v is also one member of {-m, -m+1,...,
0,...,m-1, m}:

P(y=k[x)=P(maxy, =k[x)
=P(l;1;l§.§yj gk\x)—P(r]g_g}){(y‘ =k -1|x)

=TT P(y, <k|x)- II P(y, <k -1 %)
1=izN 1£isN

Deducing from Eq. 4-6, we have corresponding
results about y.
For -m+1 <k<m-1,P (¥ =k | x)

{(k+ 05U - Ax P
\/2(A2 + M) )

(k-05U-2x

,/2(A2 + M) ]

=[0.5+0.5erf (:

—[0.5+ 0.5erf{

fork =m, P(y = m[x):

(m—O.S)U—Ax N (8)

=1-[0.5+0.5erf(
2AT + M)

andfork=-m,P(y=-m|x)

{(—-m+ 05U -Ax 4 (9)

,}2(A2 +M*xh)

=[0.5+ 0.5erf{

By Eq. 7-9, the probability of y = k 1s:

P(y:k):ip(y:k\x:h)P(x:h) (10)

h=—m

RESULTS

Mutual information: The mutual information (Shannon,
1948) between input and output signals is expressed as:

I Y) = HY)-H(Y[X) (1)

where, H(Y) is the output entropy and H(Y|X) is the
output conditional entropy. In our model:

m

H(Y)=-3 P(y=k)log, P{y=k)

K=

and:

H(Y|X)=— 3 Px=h) S P(y=k|x=h)log, P(y = k| x = h)

h=—m k=-m
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Here, we consider the input signal is umform. This
condition 1s common especially when the input signal 1s
binary. So, for each x =h:

1
2m+1

P(x=h)=

And then Eq. 11 has a simplified form I(X; Y):

1 mm

B _ B P(y=k|x=h) 12
_ P(y=k|x=h)log, 2 —“1X=1) (12)
mel == (y=klx=h)log, P(y=k)

Stochastic resonance in the system: Let A =1 andm =7,
Fig. 2-3 show the curves of mutual information [ as noise
intensity increasing. And these points around or on the
curves are obtained by simulation.

Figure 2 describes that T decreases monotonously as
noise intensity increases i case of small U (U =7 in (a)
and U7 = 7,15 in (b)) which implies the absence of SR.
While for a large U (and every threshold also becomes
large since threshold is a multiple of U), SR occurs and is
reflected by convex curves in the figures. Increasing the
value of U, mutual information rises at first to the
maximum, and then decreases. Here, the noise intensity
with which mutual information reaches its peak is optimal.

Both two of Fig. 2 mndicate that a larger U demands
stronger optimal noise. However, there is an essential
difference between them. In Fig. 2a, though the optimal
noise intensity increases when enlarging U, the maximal
value of mutual information nearly stays the same. On the
contrary, (b) shows obviously that peak value of mutual
mnformation curve drops a lot and when U rises up to 63,
the maximum approximates to zero. So, the efficacy of SR
weakens and signals are almost buried in strong additive
noise. In some degree, these phenomena demonstrate the
system 1s affected more greatly by additive than
multiplicative noise.

Figure 3 depicts images of I as a function of noise
intensity with a fixed U and various N.

It’s clear that efficacy of SR 1s enhanced with more
threshold devices reflecting by the improvement of
maximal mutual information. In addition, the optimal noise
intensity reduces due to the rise of N which means a
better effect may emerge by using less noise. Sunilarly, we
can also draw the conclusion that additive noise plays a
more notable 1mpact on this system, for a little additive
neoise may promote it to an optimal level.

As Fig. 2-3 display, strong noise exceeding the
optimum will diminish information. And efficacy of the
system turns to the worse. So it 18 sigmificant to determine
the combination of optimal noises. Generally, we can get
extremum of I by derivation of Eq. 12. That 1s to say, the
root of equations:

u=7
U=15

I(bits)

10 10° 10! 10
multiplicative noise intensity M

10 10° 10
additive noise intensity A

Fig. 2(a-b): Mutual information T as a function of
(a) multiplicative noise intensity M (fixed
A =13; (b) additive noise intensity A (fixed
M = 1) with various UJ when N = 3 maximum
and then decreases. Here, the noise intensity
with which mutual information reaches its
peak 1s optimal

a_,
aM

o () (My, Ay)
“ oo

JA

15 likely to satisfy the maximal I. However that may not
work all the time. Figwe 4 shows the image of T as a
function of two variables. In this case, U=31,N =15,
m = 7, A = 1 and multiplicative and additive noise
intensities increase at the same time.

From Fig. 4 we can’t get M, and A, fit for (*) at the
same timne. But it 1s obvious that the maximmal I 1s situated
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Fig. 3(a-b): Mutua information | asafunction of (a) Multiplicative noise intensity M (fixed A = 1) and (b) Additive noise
intensity A (fixed M = 1) with various N when U = 31

I{bits)

additive noise infensify A multiplicative noise intensify M

Fig. 4: Mutual information | as afunction of multiplicative
and additive noise intensities M, A

on A =0. Incidentally, Fig. 4 indicates that for almost any
fixed additive noise intensity, SR will appear by adding
multiplicative noise and that for some multiplicative noise
intensity, SR won't occur by adding additive noise. These
indicate the effectiveness of multiplicative noise.

Since, the combination of optimal noisesislocated in
the curve A =0.InEqg. 12, let A = 0 and the optimal M
can be given by computer: M, = 20.17. With (M, = 20.17,
A, =0), | reachesthe maximum, |,,, = 1.2354 bits. And the
system in Fig.1 is at its best, where noise (multiplicative
noise in fact) enhances information transmission to the
utmost. Another way to get the optimal intensity is to

search step by step in the globa region for a maximal
value of I. And this method gives the same result. So, it is
available to quantify the noise to get the best effect.
However, because of the complexity of systems and
unknown of signals, we aren’t aware of the exact quantity
usualy in fact, though it may well exists. And it is
necessary to do further investigations.

CONCLUSION

In this study, we study the phenomenon of SR in a
multi-threshold system. Input signals are discrete and so
are output ones. When U, the interval between
thresholds, is smal, SR doesn't exist. And mutual
information as a function of noise intensity decreases
monotonously. Enlarging U, the curve of | becomes
convex and there is a peak value denoting the optimal
state of the system. Besides, increasing the number of
threshold devices can improve the efficacy of SR. And
thes maximal mutual information goes upwards which
means information transmission is enhanced. What's
more, it is easier for mutual information to increase to the
maximum by adding additive noise than multiplicative
noise. Finaly, we give optimal combination of noise
intensity to enhance information transmission most
greatly.
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