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Abstract: The facility layout problem is one of the most complex problems in many industries and the
Loop-based Station Sequencing Problem (I.SSP) is a classical sub-problem. In this study, a dual-system method
based on Differential Evolution (DE) and Genetic Algorithm (GA) (DDEGA) was presented to solve the
LSSP. The DDEGA duplicates the system P, which represents the original problem, as systems A and B. The
systems A and B are solved by DE and GA, respectively. Since the elite migration between two systems can
contribute to increasing the diversity and decreasing the premature convergence, the DDEGA can obtain better
solutions and robustness. Numerical studies on four different scales showed that the proposed method can

obtain a challenging solution.
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INTRODUCTION

Flexible Manufacturing Systems (FMS) play a crucial
role in modern advanced manufacturing. Facility layout
problem in FMS is a manufacturing setting designed to
satisfy the contemporary market demands, such as
productivity, flexibility and on-time delivery (Drira et af.,
2007). About 20-50% of the total production cost is
allocated to facility layout and materials handling and an
appropriate placement of faciliies may reduce at least
10-30% of the total operating expenses (Tompkins, 2010).
Therefore, facility layout in early design period needs to
be schemed with much greater effort.

The facility layout in a FMS is typically determined
by the type of the material handling devices used, such as
Automated Guided Vehicles (AGVs), conveyors and
gantry robots. The most commonly used types of facility
layouts are the following, (1) Linear single row layout, (2)
Linear double row layout, (3) Cluster layout based on
gantry robot, (4) Semi-circular layout and (5) Closed loop
layout (Kusiak and Heragu, 1987). Compared with other
layout types, the loop layout has been generally studied
due to relatively low imtial costs and high flexibility
(Afentakis, 1989). The original Loop Layout Design
Problem (LLDP) is shown in Fig. 1.

This study addresses the umdirectional Loop-based
Station Sequencing Problem (LSSP) (Afentakis, 1989), 1.e.,
how to determine an order of facilities to minimize the
material-handling costs measured by the total number of
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Fig. 1: Loop layout in flexible manufacturing systems

times the material cross the loading/unloading station,
regardless of the size, shape and orientation. Since LSSP
had been proven non-deterministic polynomial-time hard
(NP-hard) (Leung, 1992), heunstic algorithms are naturally
the most promising methods.

Since, Afentakis (1989) proposed a graph theoretic
model for designing a loop network to mimimize the
average munber of machies that all workpieces cross per
urit time, many researchers have developed heuristics
techniques for LLDP. Leung (1992) solved the MIN-STUM
LLDP by using a heuristic which constructed a layout
from a solution to the linear-programming relaxation
based on a graph-theoretic framework. Kaku and
Rachamadugu (1992) addressed the problem of minimizing
the material handling costs for linear-track conveyor
systems as a Quadratic Assignment Problem (QAP) using
a heuristic method. Cheng and Gen (1998) introduced
Genetic Algorithm (GA) for both MIN-SUM and
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MIN-MAZX TL.SSP. Tansel and Bilen (1998) discussed a
heuristic algorithm based on moves and 2-way
interchanges  applied on permutations of facilities.
Plaquin and Pierreval (2000) applied an Evolutionary
Algorithm (EA) to solve cellular design problems taking
into account specific constraints, such as the bounded
size of cells, facilities that should stay together or be
separated. Adel El-Baz (2004) described a GA for LLDP
considering various material flow patterns with multi-
products. Nearchou (2006) used subrange coded DE to
solve L3SP. Pour and Nosraty (2006) coped LLDP as a
QAP with an ant-colony algorithm. Kumar et al. (2008,
2009) solved LSSP using Particle Swarm Optimization
(PSO) and Artificial Immune Systems (ALS) and the latter
introduced crossover tumntables into flow path of the loop
layout to enhance the performance of the system. More
information about the research status should be referred
to the following swveys: classification of the facility
layout problems (Drira et al, 2007). State-of-the-art
reviews of techmiques applied to Facility Layout Design
Problem (FLDP) (Singh and Sharma, 2006; Arikaran et al.,
2010).

In this study, a dual-system framework integrating
Differential Evolution (DE) and GA is proposed to solve
1.SSP. The numerical experiment shows that the hybrid
approach performed well on a problem set consisting of
four characteristic test instances ranging from small to
large size of LSSPs.

MAPPING APPROACH REVIEW

A candidate solution to LSSP 1s naturally described
as a permutation vector concerning the arrangement of
the facilities. In the literature, four mapping approaches
prevail in practice.

Random-keys encoding (Bean, 1994) is widely applied
to floating point chromosome with permutation property.
The components of the chromosome are sorted and the
order determines the sequencing of the facilities. For a
five sequencing problem, the chromosome (.46, .91, 33,
.75, .51) would represent the sequence 2—+5—1—+4—3,
which means that the first facility will be installed at the
second position.

Relative position encoding (Zheng and Teng, 2010)
is proposed specifically to deal with LSSP or QAP, which
is inspired by the procedure of insertion sort algorithm in
computer science. The basic idea 1s explained as follows:
the sequence facilities to be sorted are divided into sorted
group (f,, f,,..., f.,) and unsorted group (f, f,,,..., f,). Since
a, 18 wutialized at the first position, 1t does not participate
in sorting. For the next facility to be sorted, f, there are
(i+1) vacancies in the sorted group as the relative
positions, which are respectively coded as (0, 1,...,1I).
According to the coding strategy, the chromosome
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(P> Poes Pu) determines the relative position of the
facility sequencing (f, £,..., £} correspondingly and p,e {0,
1,..,1}. In Fig. 2, for instance, the fifth facility £, could be
placed m five relative positions and these five vacancies
are coded as 0, 1, 2, 3 and 4, respectively.

Beside the former two strategies, sequence encoding
and subrange encoding are also popular in combinatorial
problems with permutation property. Applications of
these two coding strategies i LLDP should be referred to
Adel El-Baz (2004) and Nearchou (2006), respectively. The
pseudo-code of the decoding procedwe in MATLAB
style is showed in Algorithm 1.

Algorithm 1:
% input: a chromosome RelativePos = (a;, a, ..., a,)
%output: a permutation of the facilities FacilityPos = (by, by, ...,
FacilityPos = Decode_RelativePos (RelativePos)
FacilityPos = [1,zeros(size(RelativePos))];
for i = 1:size (RelativePos)
Pos =RelativePos (i);
index = find(FacilityPos > Pos);
FacilityPos (index) = Facility Pos (index) + 1;
FacilityPos (i+1) =Pos + 1;
end

ba)

A DUAL-SYSTEM METHOD USING DE AND GA

The term “dual-system” in algorithm field is firstly
mentioned by Teng et al. (2010). The i1dea of dual-system
15 inspired by previous researches in numerous fields
such as computer security, router in commumcation and
even in biology and it is similar to the multi-island
algorithm (Whitley et ol., 1998), which often has several
populations to preserve genetic diversity and each
population can potentially follow a different search
trajectory through the search space. Dual-system and
multi-island  algorithm share the same intrinsic
characteristics of parallelism and distributedness since
different systems/islands interact with each other in order
to achieve a common goal.

Assume that only two populations with individuals’
migration between them in the multi-island algorithm, it
turns out to be a dual-system which has system A and
system B. In this study, system A executes the DE and
system B uses a GA to follow a different search trajectory.
The dual-system framework is shown in Fig. 3.

With elite migrations between system A and system
B, genetic diversity 1s hoped to achieve. The interval
generation of migrating the elite individuals from A to B
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Fig. 2: An example of relative position encoding
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Fig. 3: The dual-system framework

is defined as K,,, whereas K,, is the migration interval
generation from B to A. When the elite migration
happens, the relatively poor individuals in the objective
system are replaced. The migration ratio from A to B and
from B to A are denoted as P, and P, respectively. In the
experiments, we set K, =150, K,,= 200, P, = 30%,
P..=10%.

FORMULATION OF THE LSSP

The LSSP concerns a set of machines {1, 2,..., N}
arranged in a loop network and materials flow in single
direction. The parts enter and leave the system only at the
loading/unleading station and each part is characterized
by its part-route, the sequence of machines it should visit
to complete its processing. For a given part, suppose
processing on machines j immediately follows processing
on machine i and if the position of machine j is lower than
that of machine 1, the part must cross the
loading/unloading station, which is called a reload. The
total number of reloads necessary to complete the
processing for all parts constitutes a measure of traffic
congestion in the production system (Afentakis, 1989).

A solution to the L.SSP corresponds to a permutation
of machines by some measwres. Usually two measures
used for the evaluation of a loop layout design: (a)
MIN-SUM, i which the objective 1s to minimize the total
congestion of all the parts, while (b) MIN-MAX is to
minimize the maximum reload time among parts of the same
system. (a) is preferred here.

The average cost of the generated best loop layouts
given by the function:

M
COst e (5) = > reload,
1=l

for the MIN-SUM LSSP, where S 1s a loop layout solution,
1.e., a sequence of facilities and reload, (I = 1...M) 1s the
summation of the reloads for the ith part in the S layout.
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The average percentage Solution Effort (SE) spent by
an algorithm to achieve a near optimal solution:

ne
100

ey

SE(%) =

where, ne,_, is the number of evaluations performed by the
algorithm to achieve the best solution and ner,,, the total
number of evaluations performed by the algorithm.

EXPERIMENT

In order to evaluate the performance of the proposed
dual-system framework, an experimental study consisting
of four characteristic test instances ranging from small to
large size of I.SSPs given in Nearchou (2006) is illustrated.
Types and routes are set beforehand. The facility number
and the part number are (10, 3), (20, 5), (15, 9) and (30, 10)
and the corresponding routes are shown in Table 1.

Two heuristics algorithms, DE and GA, are compared
with the dual-system whose subsystems are DE and GA
(DDEGA) under the same conditions, with two different
mapping mechamsms. Specifically, six versions are
examined: (1) Random-keys GA (GA 1), (2) Random-keys
DE (DE _1), (3) Relative position-coded GA (GA_2), (4)
Relative position-coded DE (DE 2), (5) Random-keys
DDEGA (DDEGA 1) and (6) Relative position-coded
DDEGA (DDEGA _2). The performance of the algorithms
1s quantified by five performance criteria: (1) The optimal
value of the objective function cost(S), (2) The average
value of the objective function cost(S), (3) The standard
deviation of the objective function Cost(S), (4) The
average percentage solution effort (SE) and (5) The
processing time of the algorithm measured in second.

SETTING THE CONTROL PARAMETERS

Setting for the control parameters i1s hard to be
perfect since the countless possible choices. In order to
determine suitable settings for GA and DE to solve the
LSSP, the forth test problem, the 30-machines-10-parts
MIN-SUM LSSP, is employed as the test problem for
parameters with the population size Np = 2-D = 60. The
performance of GA 1s only depended on the crossover
probability (Cr) since Gaussian mutation adopted, the
performance of DE is depended on the values of two
control parameters: the crossover probability (Pc)
and the mutation scale factor (F). In order to determine
the suitable settings, various crossover probability
Pee{0.01, 0.05 010.., 095} 1is tested in GA;
Fe{0.4, 0.5,... , 1.0} and Cre{0.01, 0.1, 0.2,..., 1.0} are
experimented in DE, since the effective range of F is
usually between 0.4 and 1.0 (Das and Suganthan, 2011).
The algorithms are tested 10 times on each scheme
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Table 1: The required machine sequence for each part

Part

Required machine sequence

LSSP with 10-machines, 3-parts
1
2
3
LSSP with 20-machines, S-parts

SSP with 15-machines, 9-parts

SSP with 30-machines, 10-parts

10

2-1-6-5-8-0-3-4
10-8-7-5-9-6-1
0.2-7-4

4-2-3-12-1-9-16-18-5-8-20-15-14-6-11
10-9-1-3-18-17-5-6-2-11-4
17-11-6-8-7-15-16-9-1-20
14-17-11-3-16-5-13-18-20-19-12-10-6-8-15
6-18-8-4-2-7-5-9-14-19-1-20-10-16-11-15-13-12

4-2-5-1-6-8-14-9-11-3-15-12
3-2-15-14-11-1-7-10-4-5-13-6-9
5-6-11-15-2-12-3-4
10-9-4-14-2-3-15-8
11-2-4-14-5-3-15
8-10-12-11-15-13-1-14-4-5-3
5-11-10-3-7-13-8
7-3-2-8-4-10-6-15-13-9-1
11-13-3-1-12-14-4-8-9-2

6-3-4-18-5-1-14-24-26-7-11-30-23-21-13-27-9-16-17-2-25-8-15
17-9-11-8-10-22-24-13-2-29-23-21-25-16-4-20-26-18-15-12-27-6-3-7-28
13-2-6-29-21-3-14-24-12-15-17-8-1-22-28-10-7-30-20-19

7-2-6-11-21-8-16-30-1
3-17-1-2-20-22-8-6-26-19-14-11-15-12-7-16-21-10-28-23-18-4-27-24-25-13-30-9-5
30-9-2
15-9-30-19-12-3-6-5-8-14-7-28-23-1-29-24-27-2-13-4-26-16-11-10-25-21-22-20-18
7-19-5-4-9-16-3-14-28-13-11-2-21-10-17-22-26-23-29-30

21-4-1-6-11-22

12-6-17-15-13-30-26-18-14-09-7-11-23-2-4-25-24

LSSP: The Loop-based station sequencing problem
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Fig. 4(a-c): (a) The effect of various Pc on the performance of GA 1 and GA 2, (b) The effect of F and Cr on the
performance of DE 1 and (¢) The effect of various F and Cr on the performance of DE 2

with running for a maximum of 1000 generations. The

convergence charts are shown m Fig. 4.

The optimal control parameter values are obtained
through the expeniments above: Pc = 0.45 for random-keys
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GA (GA 1), Pc = 0.60 for relative position-coded GA
(GA_2),(F, Cr)=(0.5,0.9) for random-keys DE (DE_1)and

(F, Cr)= (0.4, 0.3) for relative position-coded DE (DE 2).

In the dual-system framework, system A is employed
as the main system, which conducts the better one
between GA and DE with the same encoding mechamsm.
The dual-system (A and B) are evolved cooperatively,
which means elite mndividual migration 13 implemented
at intervals of some generations. In this study, the
number of elite individual from system A to system B

80+

—+DE,
—4=GA,
754 -e-DDEG,
70
5
§ 65
=1
=
< 604
<
55
50
45 T T T T T T 1
0 500 1000 1500 2000 2500 3000
Generations

Fig. 5: Convergence curves of different algorithms with
random-keys encoding mechanism

Table 2: Comparative results for benchmark problems

is 15, the number reversely is 5 and the internal
number of generation is 3 and 4, respectively.

COMPARISON RESULTS

A maximum of 3000 generations is set to algorithms
with their respective optimal parameter settings and all
data are obtained by 50 independent runs. The results
obtained by GA, DE and DDEGA with different encoding
mechanisms are shown in Table 2, which including the
optimal and average reload time with standard deviation,
the processing time, the average percentage Solution
Effort (SE) and the best order of machines for each family
of parts. DDEGA achieves brilliant selutions in some
critical indicators such as optimal, average and standard
deviation (STD), albeit GA wins on the CPU-time. The
convergence curves with different encoding mechamsm
are showed in Fig. 5 and 6, which show that DDEGA
assimilates the merits of DE and GA and gets a better
solution.

Figure 4 shows that (1) in GA, the relative
position-coded mechanism could get similar results
with a relatively wider range of crossover probability
(Pc) and the quality of solution deteriorated rapidly
when (i) Pc for the random-keys GA level off to 1, (ii) Pc
for the relative position-coded GA approaches to 0,
(2) mn the random-keys DE, the mutation scale factor
(F) played a more critical role than the crossover

Algorithm Optimal Average STD

CPU-time (sec) SE (%) Optimal layout

LSSP with 10-machines, 3-parts

GA_l 3 3.22 0.42 12.40 0.01
DE 1 3 3.02 0.14 18.61 2.69
DDEGA_1 3 3.02 0.14 13.84 0.99
GA_2 3 3.00 0.00 10.77 0.73
DE 2 3 3.40 0.49 20.13 0.56
DDEGA_2 3 3.00 0.00 14.81 1.37
LSSP with 15-machines, 9-parts

GA_l 24 2520 079 55.70 2.40
DE 1 24 24.68 0.55 126.02 17.83
DDEGA_1 24 2472 054 91.44 12.56
GA_2 25 27.04 111 51.05 34.44
DE_2 25 25.00 0.00 122.17 7.03
DDEGA_2 24 2492 027 90.56 47.83
LSSP with 20-machines, S-parts

GA_l 16 1810 1.24 51.27 80.55
DE_1 16 17.90 0.99 125.83 45.50
DDEGA_1 16 17.02  0.68 92.00 8.47
GA_2 17 19.58  1.11 63.48 35.10
DE 2 17 1744  0.54 129.88 49.89
DDEGA_2 16 1638 0.57 101.72 16.94
LSSP with 30-machines, 10-parts

GA_l 51 5578 223 184.39 45.61
DE 1 50 53.08 1.38 521.67 75.66
DDEGA_1 49 5310 1.56 357.23 67.46
GA_2 51 5558 218 210.84 82.63
DE_2 54 5520 0.67 493.05 .50
DDEGA 2 51 5520 049 345.94 73.87

10-8-9-6-2-1-7-34-5
6-5-10-8-9-2-1-3-74
10-8-9-2-6-3-74-1-5
5-10-8-9-6-2-7-3-14
10-8-9-6-3-2-7-54-1
10-6-5-8-9-3-2-74-1

4-7-5-11-10-3-15-13-1-12-6-8-14-9-2
7-4-5-11-10-13-3-2-1-6-15-12-8-14-9
5-11-7-10-3-15-13-1-6-8-14-9-2-12-4
7-10-12-5-6-11-3-15-13-8-14-9-1-4-2
7-10-12-14-6-9-4-5-11-3-2-15-13-8-1
7-4-5-11-13-10-3-1-6-15-8-14-9-2-12

14-17-19-10-4-16-5-9-13-12-6-2-1-11-3-18-8-7-20-15
14-10-6-16-19-18-17-5-9-8-11-4-2-7-1-20-15-3-13-12
14-10-16-18-17-5-6-9-19-8-4-2-11-7-1-3-20-15-13-12
14-19-10-16-13-18-12-17-5-9-1-6-8-4-2-20-7-11-3-15
10-16-14-18-17-5-6-11-8-9-20-4-2-7-15-19-3-13-12-1
14-19-13-12-10-6-16-18-17-5-8-4-2-11-9-7-1-20-3-15

7-6-29-16-11-21-30-3-104-17-20-22-26-19-25-28-18-5-23-8-15-1-14-24-12-13-27-9-2
21-8-15-12-13-10-3-4-17-30-1-27-14-22-9-7-2-6-25-20-28-29-24-26-16-11-19-23-18-5
21-15-12-10-3-13-4-17-1-14-27-9-7-2-25-6-29-16-11-22-30-24-20-28-206-23-18-19-5-8
29-23-31-21-8-10-15-12-16-3-4-17-1-27-14-9-22-7-20-28-2-24-6-13-11-26-18-19-25-5
29-18-15-21-14-24-13-12-10-27-9-7-16-6-5-11-3-17-2-4-22-25-30-28-20-26-19-8-23-1
26-25-23-21-19-18-15-13-12-27-9-8-10-6-5-16-3-17-1-14-7-11-2-4-29-30-22-20-28-24

LSSP: The Loop-based station sequencing problem
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Fig. 6: Convergence curves of different algorithms with

relative position encoding mechanism

probability (Cr), whereas F and Cr functioned together
i the relative position-coded DE.

It can be easily seen from Table 2 that, though all six
algorithms obtained the same objective values for
small-scale problem sets, the dual-system framework
achieved the lighest performance outperforming both DE
and GA alone for the largest-scale LSSP, that 1s because
it combined two algorithms and employed the better one
as the main system and strengthened the diversity by elite
migration. [t 1s worth mentioning that, DDEGA_1 achieved
the optimal reload time 49, which was better than any
other solutions in other literatures, more specifically,
53 acquired by the sub-ranges keys DE (Nearchou, 2006)
and PSO (Kumar et al, 2008), 51 acquired by the
relative position-coded DE (Zheng and Teng, 2010)
and 50 acquired by the ATS (Kumar et al., 2009).

However, it can be easily noticed that the worst
object value (54) found in the relative position-coded DE,
which might implicate that the relative position encoding
mechanism was not suitable for DE or needed modifying.
Generally, algorithms with relative position encoding
result to be weak as DE and GA are original.

Since all of the algorithms run for 3000 generations,
the processing time in Table 2 represents the speed of

algorithm. Obviously GA is the fastest and the
dual-system 1s faster than DE.
CONCLUSION

This study focused on the Loop-based Station
Sequencing Problem (LSSP) for flexible manufacturing
systems. A dual-system framework which employs DE
and GA was proposed. With two different encoding
mechamsms, six kinds of algorthms were examined
through expenmental comparisons over different scales of
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test problems and the best layout for the largest scale
LSSP was achieved by DDEGA with random keys
encoding mechanism, which illustrated that the
dual-system framework 1s superior to DE or GA alone.
Further studies could be conducted as follows: (1)
The proposed dual-system framework should work better
with adjusted opportune moment and the mumber of elite
migration, (2) Since the wherent parallelism, the proposed
framework can be easily implemented in parallel in order to
be faster, (3) With improved DE and GA the relative
position encoding mechamsm may achieve better
solutions since the dimension of the chromosome 1s one
less than random keys encoding mechanism, (4) The
proposed framework should be applied to many other
problems even with constraints or multi-objectives.
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