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Integral Equations with Smooth Solutions

'Zhang Xiao-Yong and “Wu Huafeng
'Shanghai Maritime University, China
‘Merchant Marine College, Shanghai Maritime University, China

Abstract: The Jacobi pseudo-spectral Galerkin method for the weakly singular Volterra mtegral equations of
the second kind with smooth solutions is proposed in this study. We provide a rigorous error analysis for the
proposed method which indicates that the numerical errors (in the L’-norm and the Les-norm ) will decay

exponentially provided that the source function is sufficiently smooth. Numerical examples are given to

illustrate the theoretical results.
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INTRODUCTION

In practical applications one frequently encounters
the Volterra integral ecuations of the second kind with a
weakly singular kernel of the form:

FalION (GO RO 1)

0=x=T0=p=<l1

where, the unknown function y(x) 1s defined in O<x<T <eo.
b(x) is given sowrce function and K(x, s) is a given kernel
y~"

The numerical treatment of the Volterra integral
Eq. 1 18 not sumple, mainly due to the fact that the
solutions of Eq. 1 usually have a weak singularity at x = 0,
As discussed in (Brunner, 1985, 2004; Brunner and
Schotzau, 2006), the first derivative of the solution y(x)
behaves like We point out that for Eq. 1 without the
singular kernel (i.e., p = 0) spectral methods and the
corresponding error analysis have been provided recently
for spectral methods to Volterra integral equations and
pantograph-type delay differential equations. In both
cases, the underlying solutions are smooth (Jiang, 2009;
Shen and Tang, 2006).

In this study, we will consider a special case, namely,
the exact solutions of Eq. 1 are smooth (Camuto et al.,
2006). In this case, the collocation method and product
mntegration method can be applied directly. But the main
approach used there is the spectral-collocation method
which 1s similar to a finite-difference approach.
Consequently, the corresponding error analysis is more
tedious as it does not fit in a umfied framework. However,
with a finite-element type approach, as will be performed

1n this work, 1t 18 natural to put the approximation scheme
under the general Jacobi-Galerkin type framework. As
demonstrated in the recent book of Shen et al (2011),
there is a unified theory with JTacobi polynomials to
approximate numerical solutions for differential and
integral equations. It 13 also rather straightforward to
derive the pseudo-spectral Jacobi-Galerkin method from
the corresponding continuous version. The relevant
convergence theories under the unified framework, as will
be seen from Sects.4, are cleaner and more reascnable
than those obtained in Chen and Tang (2010).

The study is organized as follows. In section 2, we
introduce the Jacobi pseudospectral Galerkin approaches
for the Volterra integral Eq. 2. Some preliminaries and
useful lemmas are provided in section 3. In section 4, the
convergence analysis 1s given. We prove the error
estimates in the L. norm and Lee-norm. The numerical
experiments are carried out in Section 5 which will be used
to verify the theoretical results obtained in Section 4. The
final section contains conclusions

SPECTRALMETHOD

Here, we formulate the Jacobi pseudo-spectral
schemes for Eq. 1. For this purpose, Let 2 | = -ty (1+t)°
be a weight function in the wusual sense, for
a,p>—L ), 1=0,1,... denote the Jacobi polynomials. The
set of Jacobi polynomials (73°(t)F, forms a orthogonal
systermn.

For the sake of applying the theory of orthogonal
polynomials, by the linear transformation:

x=T(1+t), S=T(1+t)
2 2
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Letting:

(t):y[M}g(t) = b[@} A=[-L1]

2

the weakly singular Eq. 1 can be rewritten as follows:
u(t)=g(t)+ (t-5)* R (t.8)u(s)ds (2)

Where:

Next, we define a linear integral operator:

Moit)= j(tf s)"K(ts)o(s)ds= j’ (-e)* [%]H K(t,0)0(0)do
3)

The Eq. 2 can be rewritten as:
u(t)=g(t)+Mu(t) “4)

Now, let N be any positive integer and Py(A) be
the set of all algebraic polynomials of degree at most
N. we denote the collocation points by {ti}"_, which is
the set of (N+1) Jacobi Gauss point. We also define the
Jacobi interpolating polynomial I3fveP.(a), satisfying
IPv(t)=v(t),0<i<N

Tt can be written as an expression of the form:

H

1Pv(t) = 2v(L)E (1) ©)

i=0

where, F(t) 1s the Lagrange interpolation basis function
associated with the Jacobi collocationpoints {t, )7, .

Now we describe the JTacobi pseudo-spectral method.
Using (N +1)-pomt Gauss-Jacobi quadrature equation
with weight w_, , to approximate Eq. 3 yields:

Mo () =M (1) - T [%] RO, 00y (O

=0

Instead of the continuous immer product, the discrete
inner product will be implemented by the following

equality:

(U, V) = iu(ej)v(ej)ooj (7)

Asaresult, (u,v), =), if uveRy {A)
By the definition of I, ™, we have:

(u.v), =T vy, (8)
The Jacobi pseudo-spectral method 1s to find:
¥ -
uy (=3 u I (e Py(A)
0
such that:
Wy, ¥y = Myuy, +8, V), Vve B (7) (9
where, (4}, are determined by:

{(J;W“, T8y, — (MNJJTW“, Iy }ﬁ] _ (g, J;H*H)N (10)

1=

i
o

Denoting X =[d,, G,, ..., 0,,]", Eq. 11 yields a equation
of the matrix form:

AX =g, (1
Where:

AL )= 07T, - (I, T,
gy (i)=(8,.5,¥"),.0<i< N

SOME USEFULLEMMAS

We first mtroduce some Hilbert spaces. For
simplicity,  denote  &v(t)=(a/8,)v(t), etc. For
anonnegative integerm, define Hy (-L1)={v:&v(t)el}
(=L1,0<k=<m}, with the semi-norm and the norm as:

n L
vy, =20, v, ~ (R0H0Y )
(¥ (93 =0 (9]

respectively. Tt is convenient sometime to introduce the
SEIN1-TIOTIIS!

- '
Mo, =orv0, v = A OL ¥
L B =0 af

For bounding some approximation error of Jacobi
polynomials, we need the following nonuuiformly-
weighted Sobolev spaces:

w
W), =3 @u,afvy, | v,.= o),
%=0
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Next, we define the orthogonal
P, i (A) o Py(A) as (u—Pyu,v)=0vveP(A).

P, possesses the following approximation properties
((5.4.11), (5.4.12) and (5.4.24) on pp. 283-287 in Ref.
(Lubich, 1985):

projection

= ¢N™u (1 2)

U—Palp,, <

HY(7)

And:
3
u-Peu, < ch—mumlm 13)

We have the following optimal error estimate for the
interpolation polynomials based on the Jacobi Gauss
points (Chen and Tang, 2010).

Lemma 1: For any function v satisfying ve " AL we
have:

v =I5l

ngn 14
) N8 VL%H ( )

LW N

for the Jacobi Gauss points and Jacobi Gauss-Radau
points.

Lemma 2: If vel) (-1, for some m=1 and ¢peP(A),
then for the Jacobi Gauss and TJacobi Gauss-Radau
integration we have (Chen and Tang, 2010):

[(v.00,, - (v o)y

< cN”“B{"VLim_M ”‘tuﬁw

v, |4
L E Losp

(15)

Lemma 3: Let (F.(t)}!, be the N-thl.agrange interpolation
polynomials associatedwith the Gauss, or Gauss-Radau,
or Gauss-Lobatto pomts of the Jacobi pelynomials. Then:

1

N clogN,-l<afz-—
— _ 2 16
=ma2 RO} (o)

cNWE, ¥ = max(a, ), otherwise

B
.

We now introduce some notation. For rz0 and
xe[0,1],c"([-1,1)) will dencte the space of functions
whose r-th derivatives are Holder continuous with
expenent k, endowed with the usual norm ||||,. When
k = 0Cr,0 ([-1, 1]) denotes the space of functions
withrcontinuous derivatives on [0, T], also denoted by C,
([-1, 17) and with norm)||.| ..

We will make use of a result of (Ragozin, 1970,
Ragozin, 1971). Which states that, for each nonnegative
integerr and ke[0, 1], there exists a constant C,,>0 such
that for any function wvecC*(-1,1]) there existsa
polynomial function tyve P, such that:

votgv, <C NPy (7
where, | ||..1s the norm of the space 1([-1,1]y and when the
function ve X([-L1D. Actually, T, is a linear operator from
C*([-1,1]) toPy(? ).

We will need the fact that M which be defined by
Eq. 6, is compact as an operator from CU0.TI} to
C*([-1,1] for any 0<k<1-p (Chen and Tang, 2009).

We have the following result on the Lebesgue
constant for the Lagrange nterpelation polynomials
associated with the zeros of the JTacobi polynomials;

Lemma 4: Let 0<k=1-p then, for any function ve& C([-1L1D,
there exists a positive constant C such that:

My, <Cv{l)..0<k<l-p (18)

In ow analysis, we shall apply the generalization of
Gronwalls Lemma. We call such a function v(t) locally
integrable on the interval [0, T] if for each t=[0.T] its
Lebesgue mtegral:

J.; v(s)ds

is finite. The following result can be found in

Federson et al. (2003).

Lemma 5: Suppose that:
v(t)<wH{t)+ W(t)j;f {(t.s)v(s)dgt[0.T]

where, gw, W and @V are locally integrable on the
interval [0,T]. Here, all the functions are assumed to be
nonnegative. Then:

v(t) 2w, () + w (ORI s (Lo w. ()8

Lemma 6: Assume that v is a nonnegative, locally
integrable function defined on [0, T] and satisfying:

vit)<w. (t)+ KDJ.UL(t—s)_“ w(s)ds, t [0, T]

where, K is a positive constant and w.(t) is a nonnegative
and continuous function defined on [0,T]. Then, there
exists a constant C such that:

vit)=w. (t)+ CJ.DL(I;—S)_p w.(2)ds t [0, T]

Lemma 7: Assume that v is a nommegative, locally
integrable function defined on [-1, 1] and satisfying:
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v(t) s w. (1) + K, [ (1-5)" vis)ds

where, K, is a positive constant and w.(t) is a nonnegative
and contimious function definedon [-1,1]. Then, there
exists a constant C such that:

v(t) s w. (t)+ C_[_t1 (t—s)™" w.(9)ds
To prove the error estimate in the weighted I.-norm,

we need the generalized Hardys inequality with weights
(Gogatishvill and Lang, 1999).

Lemma 8: For all measurable function f = 0, the following
generalized Hardys mequality:

(thkf(x)lq e (X)dx)® < c(Lb\f(x) " o, () dx)"

helds if and only if:

suE(Lb o (1)1 ¥ T <o

qu

for the case 1 <p<q<ce. Here, k is an operator of the form:
(k) (x)= | p(x. )t

with p(x, t) a given kernel, w,, w, areweight functions and
-~ooga<h oo,

We will need the following estimate for the Lagrange
mterpolation associated with the Jacobi Gaussian
collocation pomts.

Lemma 9: For every bounded function v, there exists a
constant C independent of v such that:

¢ longU, “l<af= —%
GV, *HE|V

e ,
eN ?v,,y=max (. B).otherwise

where, I, (t) is the Lagrange interpolation basis function
associated with the collocation points {t}" _,.

Lemma 10: For every bounded function v, there exists a

constant C independent of v such that 1’v(t), =Cv,..
where, F(t) 15 the Lagrange mteIpolatlon basns

function associated with the Jacobi collocationpoints.

A

CONVERGENCE

As 15 15 the mterpolation operator which 1s based
on the (N+1)-degree Jacobi-Gauss pomtswith weight
w_, . interms of Eq. 8-9, the pseudo-spectral solution u,,
satisfies:

(U — L * MU, TP e v, =0y, e (A)  (19)

o-j-p

Where:
M,y = Muy, — Q() (20)
j(”l (1-2V K (1,2)uy (2)d?
*E(tzl)l R((,?,0007 0, (7 DUy (3(8,7,07 1)
((tzl)1 FR(s(t )7, (uy (st o)),
t+1

—((—)K(S(t 07?5, Ch g (sCE 00y,

inwhich (_,.},, , represents the continuous inner product
with respect to 0 and (.,.)y 1sthe corresponding discrete
inner product defined by the Gauss-Jacobi quadrature
formula. The combination of (4.1) and (4.2), yields:

(uy + QO L My, ~L e v), =0
which gives rise to:
+ I;{P,-PQ (t) _ I;J“’_“MUN — I;J“’_“g (22)
By the discussion above Eq. 17, 19 and 22 are
equivalent.
Next we consider an auxiliary problem, we want to

find Gy, such that:

— (M, v )y = (8. Vy )y, ¥V, €2,(?) (23)

(ﬁN=VN)N

where, M is the integral operator defined in Sect 2.In terms
of the definition of 1/7*, Eq. 24 can be written as:

(ﬁN SV g — (I;JHFHMﬁN Ve =R Ve Ty € 7y (? ) (24)
which 1s equivalent to:
Oy - I *Mil, = I g (25)

When g = 0, Eq. 25 can be writtenas 4, - I;*Mi, =0.
In terms of the fact that:
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i, — MM By =1, =My + (M By, =M )
Suppose that K(t, s) < L. It 1s clear that from Eq. 2:
i <L (t—8)" fog ()]s + [l M B, —M B,
Using Lemma 7 leads to:
16y < CLF*M Gy —Mil,, (26)

We now estimate |4, . <c||L;*"Ma, -Mb,[|.. By
virtue of Eq. 14, Lemma 4 and 9,we obtain that:

L My, M L= (0 | L% LOME, -t Miy [l (27)

I

Thus, together with Eq. 26, gives:

log NN7* ||, ||

1
“la—p<——,
< 2

1=

Otherwise.

Loy
<oNT iy s

which implies, when N 1s large enough and:

p+?>%,ﬁN=0

Hence, the 1, is existent andunique as P(A) is

finite-dimensional.

Lemma 1: Suppose that ueH;_,_ (?) and Kit,s) <L then

we have:
(ol )<
clogNN*  (ull,. ), —1<—-p<—
b legs] )
eN® (\ lull,, . ), Otherwise.
and:
N
clog NN* lull, .. + N7 ull5
—uglly o=y i
Nl + NGl otherwise
(29)
Proof: Subtracting Eq. 25 from 4 yields:
()=l + T My, - Mu(t) =g (t) - T;# g (30)

Setting eu(t)-1, vields:

e=u—-L""u+ Me—[Me—I;“"“Me] (31
which implies that:
|e|£|Jl‘+|J2‘+Lj.jl(t—s)’“‘e(s)‘ds (32)

where, J =u-T}", J,= Me-T>*Me. Using Lemma 7
gives:

el <1, 1+ e (=80, |1, s (33)
Then, it follows from Eq. 33 that:

lelle < Q1 Ty e +11 1,112} (34)

-
By using Eq. 20, Lemma 9, we obtain that:

-Gl < el (LA Ml ) u =Pyl .
3
clog NN* u
=

1
w150, (35)

3
Zmep

cN* o1 m,—%< —p<0.

m,

We now estimate the third term 1,. Tt is clear that
gec[-1, 1]. Consequently, using Eq. 24 and Lemma 22 it
follows that:

I e = 1 (T T * ) (Me — t Me )| < el | T- T2,

T

-cl()gNN"‘eLw.—1<—p:£—l (36)
Me—t, Mél| . < 2

Ly

M .
cN? ¢ otherwise

o

where, ke(0, 1-u) and T,MeeP(A). The estimate Eq. 38
follows from Eq. 34-36, provider that N 1s large enough
and:

1
THUE—
# 2

Next we prove Eq. 29. Using the generalized Gronwall
inequality (Lemma &), we have from Eq. 32 that:

2 2 2 2
lelf, <COLIG +ILI, +lel)

2 2 2
SCULIE  +IL I +llelf
n g

ey

(37)

From Lemma 10, we obtain that:

2 -7
ILl: <clle-ty,Me|<cN™ |ell.
-
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This result, together with the estimates Eq. 28, 37 and
21 yields Eq. 39.

Now setting E = ,;-u,, subtracting Eq. 32 from 35
leads to:

E-I;*Q(t) - T *ME = 0 (38)

Let e, = u-y,; be the Jacobi pseudo-spectral solution
uy of Eq. 16. Now we are prepared to get ow global
convergence result for problem Eq. 2.

Theorem 1: Suppose that |K(,s)|<L and the solution of
Eq. 2 1s sufficiently smooth. For the Jacobi pseudo
spectral solution defined in Eq. 6, we have the following
estimates:

¢+ L~norm of |ey| satisfies:

3
clog N(? ™|ull,+2 4 [all,, ) herwise,~1< —u s%

Mewllesy , :
c[

T FR ;
? [[ull,,+? lull,, . | otherwise

» L%, norm of |e satisfies:
3m
clogN? ™ [|{juf)l|,. +elog NN* " Jul,
+eNT" | BTUHh’Mﬂ le—ps 7%’
leall, , < E. I %)
T e ke e (ful, )
o | 4m 1
+eN (H6t u ?Hm_u),—5< —p=0.

Proof: We prove the existence and umqueness of the
Tacobi pseudo-spectral solution uy,. As the dimension of
Pt 18 fimite and Eq. 6 and Eq. 32 are equivalent, we only
need to prove that the solution of Eq. 32 is u, = 0 when
g = 0. We consider the equation:

Uy TF Q) ~ T e =0 (40)

Obviously Eq. 40 can be written as:

uN:J._tl(t—s)'“ K(t.s)u,(s)ds+T, +1, (41)

] =I;¢“’_“? Uy —? uy, =—I;{“’_“Q(t). US]Ilg Eq 41 giVGSZ

g <0< [ L (8™ )] ds (42)

Using Lemma 7 yields:

) @)

(

< c:(HJ1

NL T

L Jr”JE

On the other hand, according to Lemma &

¢(log N)*|Q(t)
SNTH Q)

¢ l<opsot,
I, TR TR

2
=
I

- =l

2 .
N otherwise.

By the expression of Q(t) m Eq. 31 and Lemma 2, we
have |Qit)|<cN™|u] which, together with Eq. 43,

LIES
gives:
clog NN™ |Ju —1<p:<—l
[Lhe<t 2 (44)
eNZ T HUN " ,otherwise.

The combination of Eq. 34, 42 and 44 yields:

- e 1
clog NN+ N™ ") lugl|l.,-l<ps——,
< g H Kl M 2 (45)

L™ 1

1
N,

Ju

L otherwise.

Based on Eq. 45 and Lemma 4 with:

K+ >l
“2

when N 1s largeenough v, = 0. As a result, the existence
and uniqueness of the pseudo-spectral solution uy
isproved. Now we turn to the error estimate of u-uy.
Actually Eq. 35 can be transformed into:

B[ <L] (t—5)" [E(s) ds+ 5[+ ]| (36)

with I, =I*Q(t), I, =I7"*ME-ME. It follows from Eq. 36
and Lemma 7 that:

[E] <e _[_tl(t—s)'“(|l3|+\J4|)ds+‘13‘+|14‘ (37)
which yield s:

E,. <c(ly. +7,.) (38)

i

Similar to the estimate of Hq. 27. We obtain:

clog NN™|E Lm,—1<—u£%

7, (39)

<
I

1
Nzt HE Lotherwise.

1=
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By Eq. 37, we have that:

1
clog NN ™ |ug|..,-l<-ps=
T P U0
eNz ot HUN . sotherwise.
In terms of Eq. 38-40, we obtain:
1
clog NN (Ju —u |, +|juf)-1<-p<—
IE],» < e NGV
N (”u = Uyl + Hu - ), otherwise
By the triangular mequality:
lu—uy]l. < u—dy]. + iy —vy]. =u—Gy]. +E,. (42)

as well as Eq. 40-41 and Lemma 4.1, we can obtain the
estimated Eq. 39 provided N is sufficiently large. Next we
prove Eq. 40, Using the generalized Hardy
inequality(Lemma &, p = g = 2), one obtains that from
(431

2
[l

WLl

sl Wl )se(nl < lE) (43

The combination of (4.33), (4.34) and (4.37) yields:

clog NONN" |E|. + N7 |Juy Lm),—1<—u£%,
By, <t (oo " (9
" C{N2 ' “HE .+ N “HUN LMJ, otherwise

By the triangular inequality again:
Jo-uls, | <lu-tuls  +[E,

In terms of (4.35)(4.38)(4.39) and Lemma 4.1, we
obtain the desired result.

NUMERICAL RESULTS

We give two numerical example to confirm our
analysis.

Example 1: Consider the second-kind weakly smgular
Volterra integral equation:

3 7
A+ 16(t+1F ¢ .
et + - +0 (t- tYate*u(t)dt
3 o oY) ©

ult)=

o1
24

Log,E.2
(=]
1

Error

-14 T T T T T 1
5 8 11 15 18 21 24

N

Fig. 1: 1}, error of example 6.1

Log,E.2

-14 T T T T T 1
5 8 11 15 18 21 24

N

Fig. 2: 2 error of example 6.2

The exact solution is u(t) = -e* Fig. 1 shows the errors
u-uy of approximate solution inweighted 12 and Fig. 3
shows the errors 1" norms obtained 1;;( using the
pseudo-spectral methods described above. Tt is observed
that the desired exponential rate of convergence 1s
obtained.

Example 2: Consider the second-kind weakly singular
Volterra integral equation:

5
160t + 1)* t
5

050,58

7 3
u(t)=cos0.5t- +4(t+1)4+jt1(t—t)7 u(t)dt
- c

The exact solution is given by u(t) = cos 0.5t.

Figure 2 and 4 plot the errors u-uy, for 5<N<24 in 1}
and L” norms. Onceagain the desired spectral accuracymiﬁs
obtained. Tn the Fig. 3-4, |l &, [|. is the maximumpoint-wise
error, 1.e.:
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-5 rror

Log,E.4

Fig. 3: L” error of example 6.1

-1
2

rror

Fig. 4 L” error of example 6.2

” Sy “L” = 51;11231{ Ey (t])
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