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Abstract: The choice of sparsity bases plays a crucial role to reconstruct high-quality MR images from heavily
under-sampled k-space signals. Traditionally, the Wavelet transform and the Total Variation (TV) are used as
the sparsity bases. In this study, a novel sparsity basis, based on a two-dimensional Walsh transform, is
proposed to sparsify the MR image. The basic theory of the Walsh transform-based CS-MRI is explained and
the proposed technique 1s validated with experiments. Three different types of MR 1mages are used to test the
proposed method performance in terms of reconstruction accuracy. The results show that the proposed Walsh
transform-based sparsity basis is capable of reconstructing MRI images with a higher fidelity than the
traditional Wavelet transform-based sparsity basis using a similar running time.
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INTRODUCTION

The development of a proper sparsity basis has been
an important 1ssue for the implementation of Compressed
Sensing (CS). Given the precondition that the sensing
matrix is incoherent with the sparsity basis, sparser
representation requires fewer samples for a reliable CS
reconstruction (Lustig et al., 2007).

For the CS application in Magnetic Resonance
Imaging (MRI), there exist two categories of sparsity
bases. The first category exploits the intensity
distribution 1n the image domain, such as the Total
Variation (TV) method (Huang et al., 2011) that identifies
the global and local structures of the images and the
K-3VD method (Aharon et ¢l., 2006) that constructs an
over-complete dictionary for sparse representation from
mmage blocks. The second category transforms images
into other coefficient matrices, such as discrete wavelet
(Huang et al, 2011) and cosine transforms that
concentrate most of the energy expressed with large
coefficients.

The Walsh matrix is a typical square matrix
(Fine, 1949), with sizes of a power of 2. The Walsh matrix
has two properties: first, the entries are only +1 and -1 and
second, the dot product of any two distinct rows
(or columns) 1s zero, thus the rows (or columns) are

orthogonal to each other. Because of the orthogonality,
with the Walsh transform the spatial redundancy can be
greatly reduced. In this way, energy concentrates in the
largest coefficients of the transform matrix. Furthermore,
the energy concentration property of the Walsh transform
results in most of the coefficients being quite small, even
zero. Previous literature has used the Walsh matrix as a
sensing matrix to sparsify the reconstructed target
(Li et al, 2012, Dang et al, 2012). In the view of
compressed sensing, it indicates that the coefficient matrix
of the Walsh transform can act as a sparse representation
of the MR mmage. In this work, we explore the possibilities
of developing the Walsh transform as a novel sparsity
basis for MR immages in both theoretical and practical
aspects.

THEORY

Suppose m 1s the target MR 1mage, which 15 known
to have a sparse representation in some transform . @,
1s the sensing matrix, which transforms m into the k-space
and then randomly acquires samples from the k-space; y
is the acquired signal. Then, the CS-MRI problem is
defined as:

minimize: ||, (m)-y||+A(m)|, (1
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where, ||P.(m)-y||; is the data fidelity regulation, [P(m)], is
the data sparsity regulation, 4 is the weighting parameter.
In Eq. 1, the sparsity basis ¥ is expressed with a Walsh
transform.

Given a one-dimensional signal f(x) with a size of N
= 2% the Walsh transform and its inverse are defined as:

ww=Y  f(xg(xu) (2)
Fw=3""w(wh(xu) (3)

Here, g(x,u) 1s the Walsh transform kernel and h(x,u) 1s the
inverse kernel function; g(x,u) and h(x,u) are identical to
each other as:

gx, u)=h(x,u)=
(4

n-

ﬁ(—nzg B(x}b,.,_, (W)

where, b, (x) is the binary digit (O or 1) at the i+1 position
of the binary number x.

Similarly, given a two-dimensional signal f(x,y) with
a size of MxN, where M = 2" and N = 2", the Walsh
transform and its inverse are defined as:

w(u,v):zi_;E::—;f(x, v)g(xu,v,v) &)

f(u,v):Zi':Z:;w(u, v)hix,u,y,v) (6)

The Walsh kernel function g (x,1,y,v) and its inverse
h (x,u,y,v) are defined as:

g(x, 0y, v)=hixuy,v)

it

1 o a1
:m(f D2, b, (W 27 b ()b, (V)

From Eq. 7, it can be found that the functions g (x, u,
v, v)and h (x, u, y, v) are separable and can be expressed
as:

g(xuy.v)=h{x.u0y.v)=
g (x.u)g, (v,v)=h, (x,u)h, (y,v) (&)
g (x,u)=h, (x,u)=

RIS aLE (9)
=t DY " b, (x)b,, (u)

1 = a1 10
A DI ACO LY (10)

Fig. 1(a-c): Demo of sparsity bases, (a) Head image,
(b) the Walsh transform coefficient matrix and
(c) the wavelet transform coefficient matrix

Therefore, the two-dimensional Walsh transform can
be implemented by successive one-dimensional Walsh
transforms.

The Walsh transform has the energy concentration
property; here, take a 4x4 matrix as an example, where all
the entries are 1. The matrix [ and its Walsh transform
coefficient matrix W are computed as:

—
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If the two-dimensional signal 1s smooth, then its
Walsh transform coefficient matrix can be very sparse.
This phenomena 1s also applicable for some kinds of MR
images, such as the head image shown in Fig. la. To
compute the Walsh transform coefficient matrix, the
one-dimensional Walsh transform is performed on the
head image column-by-column, then row-by-row. As
shown in Fig. 1b, large coefficients concentrate on the
top-left cormer of the matrix, which 1s the sparse
representation of the head image. For comparison, the
Wavelet transform coefficient matrix is also illustrated in
Fig. lc.

Figure 2 compares the sparsity of the Walsh
transform coefficient matrix and the Wavelet transform
coefficient matrix of the given head image in Fig.la.
Figure 2a plots the sorted normalized coefficients of the
Walsh and Wavelet transform matrices and Fig. 2b zooms
in on the lower-left corner of the coordinate system. Tt can
be observed that the Walsh transform -coefficients
decrease much faster than the Wavelet transform
coeflicients.
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Fig. 2(a-b). Comparison of coefficient magnitudes with the Walsh and Wavelet transforms, (a) Global coefficients, (b)
the lower-left zoomed-in coordinate system

|

Fig. 3(a-b). Incoherence between under-sampled Fourier transform and the Walsh transform (a) for Cartesian sampling
trajectory, (b) for radial sampling trajectory. The left column shows the under-sampling patterns, the right
column shows the corresponding transform point spread function (TPSF) representations

The incoherence between the sensing matrix and the
sparsity basis is a fundamental criterion for compressed
sensing reconstruction. In CS-MRI, the sensing matrix is
conventionally defined as an under-sampled Fourier
transform. In this work, the Transform Point Spread

Function (TPSF) was used to evaluate the incoherence
between the under-sampled Fourier transform and the
Walsh transform (Lustig et al., 2007). Figure 3 illustrates
the TPSF results on two different sampling patterns. For
the Cartesian sampling trajectory, a pulse is marked in red
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in the Walsh coefficient matrix and the result reveals that
the artifacts only exist on the same row with the position
of the pulse. For the radial sampling trajectory, the
artifacts also only exist on the same row and column with
the position of the pulse. Therefore, the artifacts are
greatly suppressed on other positions and the
mcoherence 13 enhanced with the proposed Walsh
transform-based sparsity basis.

With the demonstrated properties of sparsity and
incoherence, we can now use the Walsh transform as a
new sparsity basis for CS-MRI. Suppose m = f (x,y) 1s the
two-dimensional MR mmage, then its sparse representation
wiu,v) 1s defined as:

Wil (x,y)=w(uv)=

- (1
T Tty ey, v,
MATERIALS AND METHODS
We have experimentally compared the

Walsh-transform-based  sparsity  basis and  the
conventional Wavelet-transform-based sparsity basis
and have tested two MRI datasets. As shown in Fig. 4,
a head image and a breast image with sizes of 512x512
were acquired by a Siemens (Siemens Magnetom TIM
Trio, Erlangen, Germany) 1.5T MRI system (CCAI, 2012).
Cartesian trajectories and radial trajectories were
considered when implementing the under-sampling of the
k-space data. The reduction factors were set to be 4 and
6, respectively. The fast composite splitting algorithm
(FCSA) was used to 1implement the CS-MRI
reconstructions (Huang et al., 2011). Weights between
the data fidelity and sparsity regulation were optimized
from multiple trials, the iteration mumber was set to 50 in
all cases. All the experiments were performed in the
Matlab (Mathworks, Natick, United  States)
environment on a laptop with a 2.10 GHz Core i7 CPU, 6G

Fig. 4(a-b). MR datasets reconstructed with full k-space
samples (512x512), (a) Head and (b) Breast

memory and Windows 7 operating system. The
reconstruction times were then recorded to measure the
algorithm efficiencies.

RESULTS

Table 1-4 and Fig. 5-6 compare the reconstruction
results using both the Walsh transform and wavelet basis.
The Signal-to-noise Ratio (SNR)) was used to quantize the
image qualities. In most cases,
experimental settings, the Walsh transform-based sparsity
basis method achieved a higher SNR than that of the
Wavelet transform-based sparsity basis. From the
reconstruction results, it can also be found that, with the
same reduction factor, the radial under-sampling pattern

under the same

Table 1: Reconstruction results of the head image under Cartesian
trajectories

Reduction factor Sparsity basis SNR (dB) Runtime (s}

4 Walsh 15.84 5518
Wavelet 1572 64.25

6 Walsh 12,33 5838
Wavelet 1248 63.90

Table 2: Reconstruction results of the head image under radial trajectories

Reduction factor Sparsity basis SNR (dB) Runtime (s}

4 Walsh 26.01 53.83
Wavelet 21.55 67.17

6 Walsh 20.69 5372
Wavelet 18.21 64.41

Fig. 5(a-b). CS recomstructed head mmage, (a) Row, using
the Walsh transform-based method and
(b) Row, using the Wavelet transform-
based  methed. First column,
reconstructed images. Second column, the
zoom-in region of interest. Third column,
error maps. In the implementation, it was
based on a radial sampling pattern under a
reduction factor of 4
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Table 3: Reconstruction results of the breast image under Cartesian

trajectories
Reduction Factor Sparsity Basis SNR (dB) Runtime (s)
4 Walsh 2131 56.23
Wavelet 19.23 66.81
(5] Walsh 1571 56.73
Wavelet 14.86 69.26

Table 4: Reconstruction results of the breast image under radial trajectories

Reduction factor Sparsity basis SNR. (dB) Runtime (s)

4 Walsh 32.04 52.23
Wavelet 25.55 69.49

[\] Walsh 2817 56.03
Wavelet 21.88 69.73

Fig. 6(a-b). CS reconstructed breast images, (a) Row,
using the Walsh transform-based method
and (b) Row, using the Wavelet
transform-based method. First column,
reconstructed 1mages. Second column, the
zoom-in region of interest. Third column,
error maps. In the implementation, it was
based on a radial sampling pattern and under
a reduction factor of 6

was more effective than the Cartesian under-sampling
pattern in reserving the dominant mformation of the
k-space. The runtimes of the Walsh transform-based
method were generally shorter than the Wavelet
transform-based method, which results from the different
execution times of the Walsh and Wavelet transforms. A
typical Walsh transform on a 512x512 matrix took about
0.15 sec, while a typical level-1 Wavelet transform took
about 0.27 sec.

CONCLUSION

In this study, for the CS-MRI reconstruction problem,
a Walsh transform-based sparsity basis was proposed to
sparsify the MR image. Experiments showed that the
Walsh transform is well capable of sparsifying MR
images and moreover, it 1s strongly incoherent with the
under-sampling Fourler transform (sensing matrix). From
the experimental results, it outperforms conventional
sparsity bases, such as the wavelet transform. In our
futire work, we will exploit the artifact distribution
characteristics and develop a blocked Walsh transform for
the CS3-MRI application.
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