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Abstract: In this study, we further study the complex dynamical networks with time-varying inner-coupling
functions and time delays. Based on the theory of asymptotic stability of linear time-delay systems, several

synchronization criteria are established for such network. As illustrative examples, we use the networks with
coupling delays and a given coupling scheme to test the theoretical results.
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INTRODUCTION

Complex networks are the sets of interconnected
large-scale nodes, in which a node is a fundamental unit
that can have different meanings in different situations,
for example, chemical substrates,
computers, schools, companies, papers, webs and people.
Examples of all kinds of complex networks contain the
Internet, the World Wide Web, food webs, electric power
grids, cellular and metabolic networks, etc. (Strogatz,
2001). These good-sized complex networks always show
better cooperative or synchronous behaviors among their
constituents.

Complex networks were conventionally researched
by graph theory, for which a complex network was
described by a random graph, where the radical theory
was introduced by Erdos and Rényi (Erdos and Renyi,
1960). Watts and Strogatz (WS) (Watts and Strogatz,
1998) introduced the conception of small-world networks
to describe a transition from a regular lattice to a random

miCI'OpI'OCBSSOI’S,

graph. Another sigmficant discovery m the field of
complex networks 1s the observation that many large-scale
complex networks are essentially scale free (Barabasi and
Albert, 1999). After these networks were introduced, much
attention has been paid to them to explore their complexity
(Albert and Barabasi, 2002).

As amatter of fact, time delays commonly exist in the
world. The dynamics of networks with delayed coupling
have been extensively studied in recent years. A model of
dynamical networks with multi-links was constructed in
Refs. (Peng et al., 2010). In the study (Hoang, 2011), the
complex synchronization manifold was demonstrated for
the first time which was generated in coupled multiple time
delay systems. Importantly, the synchronization of
complex networks with delays still provides several

scientific challenges and some new stability criteria are
yet to be discovered. In the present study, we further
study the synchronization of complex dynamical networks
with time-varying inner-coupling functions and time
delays. Based on the theory of asymptotic stability of
linear time-delay systems, the stability criteria of the
synchronization state are derived.

CRITERIA OF SYNCHRONIZATION

Here, based on the theory of asymptotic stability
of linear time-delay systems, we will develop novel
synchromzation stability in  complex
networks with time-varying mner-coupling function and
time delays. Firstly, we will make some preliminaries as
follows.

Consider a time-delay dynamical system:

criteria  of

¥ = A(DX + B(OX{L - 7) (1)

where, xeR"™, A(t), B(DeR™, B(t) is an integral function
matrix and ©>0 1s time delay. The fundamental results
which give the condition for stability or asymptotic
stability of system 1 are summarized in the following
lemmas, respectively.

Lemma 1: Vidyasagar (1993). Let A (t) be a constant
matrix. Stability of zero solution of system 1 is achieved if
the following conditions are satisfied:

%= Ax (2)

»  Zerosolution of system 2 1s stable:
» _[:”B(t)udt < @
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Lemma 2: Vidyasagar (1993). Let A (t) be a continuous
periodic function matrix. Asymptotical stability of zero
solution of system 1 is achieved if the following
conditions are satisfied:

%= AN, A(L+ o) = A(t) 3
¢ Zerosolution of system 3 is asymptotically stable
. _[:“B(t)”dL < 0

[|[X]|| denotes the norm of the matrix X.

The above two lemmas which mnelude mformation of
the delay is referred to as the stability criterion. It is
noticed that condition 1 1s the stable problem of the
ordinary differential equation. Hence, we resort to the
following criterion to explore the stability of the time-delay
systerm.

Comnsider an ordinary differential dynamical system:

% = At (4)

where, x = (%, %,, X LetD = (At A = (8;(1))y, and
dy = (ay(DHa ()2, 1,j=1,2,...,n.

Lemma 3: Hirsch et al. (2008). If D is a negative definite
matrix and an often negative matrix, then zero solution of
system 4 1s stable; If D 1s a positive definite matrix, then
zero solution of system 4 is unstable; If D is a negative
definite matrix, then zero solution of system 4 is
asymptotically stable.

In what follows, we consider a general complex
dynamical network consisting of N identical linearly and
diffusively coupled nodes, with each node being an
n-dimensional dynamical system and introduce the
coupling delays and time-varying irmer-coupling function
in this network. This dynamical network 1s described by:

% =T(x)+ ci C, GO, (- 1)) )]

where x; = (X, X, ... .%X.) €R" is a state vector representing
the state variables of nede 1,1 =1, 2,... . N. G{t) = (a,(t))eR™
is a coupling link matrix between node i and node j (i # j)
for all 1<1, j<N at tume t, the constant ¢>0 18 the coupling
strength, C(t) = (C)yay 13 the coupling cenfiguration
matrix representing topological structure of the network at
time t, in which Cy(t) 13 defined as follows: If there 1s a
connection from node 1 to nede j(1 # Jithen C, = C, = 1,
otherwise C; = C; = 0 and the diagonal elements of matrix
C(t) are defined by:

C=- Y C0,i-12.N (6)

i=Llj=i

Lemma 4: If C satisfies the above conditions, then there
exists a unitary matrix, @ = (¢, ¢,,..., ¢y), such that:

g, = Ao k=12..N (7

where, &, 1=1,2,... N, are the eigenvalues of C.
Hereafter, the delayed dynamical network 5 is said to
achieve (asymptotical) synchronization if:

X=X, 0=.=x,() t>o (&)

where, s(t)eR" is a solution of an isolate node, namely:

§(t) = fls(t) %)

Throughout this study, we assume that s(t) is an
orbital stable solution of the above system. Clearly, the
stability of the synchronized states 8 of network 5 is
determined by the dynamics of the isclate node, the
coupling strength c, the inner-coupling matrix G, the
outer-coupling matrix C and the time-delay constant t.

Theorem 1: Consider the delayed dynamical network 8.
Let:

(10)

be the eigenvalues of the outer-coupling matrix C. If the
following N-1 of n-dimensional time-varying delayed
differential equations are asymptotically stable or stable
about their zero solutions:

W= JOWO + chCOW(t 1) (11)
where, I(t)=f'(s(t))e R™® is the Jacobian of f (x(t)) at s(t),
then the synchromzed states 8 are asymptotically stable

or stable for the dynamical network 5.

Proof: Without loss of generality, let x,(t) = s(t) be the

reference direction of the synchronous mamfold

X, =x,(t)= ... = x,(t). Then we have:
e (1) =%, (H—-s(t)=0 (12)

and:
X (O =s(h+e (Di=12.,N (13)
Substituting 13 into network 5 yields:

& (1) =f(s(t) + e () - F(s()

(14)

H
+oy, C,Gite (t—3,i=23,... N

iz
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Dencte:
T(0) = (6, (1), & {0),.. 5 (D)
g (t) = (e, (), 5 (B, )"
S(ty=(s(ts(0),...8()7 e R™P
Then Eq. 14 can be written as:
B(1) = F(t,8(1) (15)

For the dynamical network 5, to investigate the
asymptotical stability or stability of its synchronous state,
we only need to analyze the asymptotical stability or
stability of the zero transverse errors of the synchronous
manifold.

From Eq. 15, we know that its corresponding linear
system at &(t) = 0 1s:

&(t) = DF(t, 0)&(t) (16)

Since, the Jacobian DF(tx) 1s bounded and Lipschitz
on £, uniformly in t, according to the Lyapunov converse
thearem [21], the origin is an asymptotical stable or stable
equilibrium point for the nonlinear system 15 if and only
if 1t 13 an asymptotical stable or stable equilibriuru point
for the linear time-varying system 15.

According to Eq. 12-13 and 16, we get:

e, (t)=Df (s(the, (1) + cﬁ: C‘JG(t)eJ {t—1)

=Df(s(t)e,(t)+ cGD(e, (t— 1), e,(t—1),...,
ey (t—TC,, Cpnn G )= L2, N

(an

where, e(t) = (e,(t),e,(t),....e (ER™™, Df(s(t)) eR™™ is the
Tacobian of f(x) at x = s(t). That 1s:

&(1) = DE(s(0)e(t) + cG{De(t — )CT (18)
Since, () =0,81)—>0as t—=0 is equivalent to e(t)—~0
as t—0.
From the hypothesis of Lemma 5, we have:
C'0 = QA (19)
where, A = diag{A,, A, Ay }. According to Lemmas 5,

A, =0 for all t=t; and @™ = (¢, ¢,...¢,)" withd’, =(1,1,.,
1) for all t=t,.

Consider the linear

transformation:

following  nonsingular

e(t) = v(t)™ (20)

According to Eq. 18, the matrix vector v(t) = (v,(t),
V(... vi(£)ER™ satisfies the equation:

v(t) = Di(s(t)v(tteGOv(t-THA 21
namely:
() = DEG(Evt)+eAGEv(t-THA (22)

Thus, we have transformed the stability problem of
the synchronized states 8 to the stability problem of the
N pieces of n-dimensional hinear time-varying delayed
differential Eq. 22. Note that 4, = O corresponding to the
synchromization of the system states 8, where the state
s(t) 1s an orbital stable solution of the isolate node as
assumed above in Eg. 8. If the following N-1 pieces of
n-dimensional linear time-varying delayed differential
equations:

¥,(t) = DEGS(Ov,(EHeAGEv(t-THA (23)

are asymptotically stable or stable, then e(t) will tend to
the origin asymptotically which implies the synchronized
states 8 are asymptotically stable or stable.

The proof is thus completed.

Then we will formulate main results based on the
above preliminaries. In terms of Lemmas 1, 2 and 4, we can
get the following stability criternia of synchromzation for
complex networks with time-varying immer-coupling
function and time delays.

Theorem 2: Tet J(t) be a constant matrix. The
synchronized states 8 of network 5 are stable if the
following conditions are satisfied:

%= Jtx 24

»  Zerosolution of system 24 1s stable

L Jea.Gtid, <=
Proof: If zero solution of system 24 is stable and:

j:Hc?g(_“r(t)”dt <@
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then the linear time-delay system 11 is stable according to
Lemma 1.Then we resort to Lemma 4 and the synchronized
states 8 of network 5 are stable when the linear time-delay
system 11 1s stable.

Theorem 3: Let I(t) be a continuous periodic function
matrix. The synchronized states 8 of network 5 are
asymptotically stable if the following conditions are
satisfied:

% = (b, J{t+e) = I(H) (25)

*  Zero solution of system 25 is asymptotically stable
L] “C?\.‘G(t)‘pt <@

Proof: First of all, If zero solution of system 28 is
asymptotically stable and:

_[:HC?L‘G(t)\ﬁt <

then the linear time-delay system 11 is asymptotically
stable accordng to Lemma 2. Then we resort to
Theorem 1 and the synchromzed states 8 of network 5
are asymptotically stable when the linear time-delay
system 11 is asymptotically stable.

TWO NUMERICAL EXAMPLES

In order to illustrate the main results of the above
theoretical analysis, we first consider a lower-dimensional
network model with five nodes, m which each node 1s a
simple three-dimensional stable linear system described as
follows (Li and Chen, 2004): %, = x,; X, = -2x,; %, = -3x,
which 1s asymptotically stable at s(t) = 0 and its Jacobian
15 I(t) = diag{-1 -2 -3}. Assume that the time-varying
inner-coupling matrix is G(t) = diag {e™", e, e} and the
outer-coupling matrixis C=[-21001;1-3110;01-21 0;0
11-31,1001-2].

Obviously, G 18 an wreducible symmetric matrix
satisfying condition 6. The eigenvalues of G are 4, = O,
-1.382, -2.382, -3.618, -4.618. For clearer visions, we take
the coupling strength ¢ = 0.2 and time delay T = 2.

In terms of Theorem 2, if the condition 1 and 2 are
satisfied, then it is inferred that for any delay the
synchronization of the complex network can be achieved.
Furst of all, we begin to verify whether the condition 1 is
satisfied. Clearly, J(t) 1s a constant matrix. It is easy to
verify that the following inequality is established for all
nonzero three-dimensional vectors.

Let y = (¥, v, ¥;) be a nonzero three-dimensional
vector, then:
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Fig. 1(a-c): Synchronization errors for the
network withe = 0.2andt=2

delayed

I+7 1 3
7 ¥ :fgyf -y fgyi <0

¥

From Lemma 3, we know that zero solution of
system 24 is stable. Secondly, we will make sure whether
the condition 2 of Theorem 2 1s satisfied. Therefore, the
synchromzed states 8 of network 5 are stable. InFig. 1, we
plot the curves of the synchronization errors between the
states of node 1 and node it+1(that is, e,(t) = x;(t)-x,., (1)),
for 1 =1, 2, 3, 4, =1, 2, 3, with the coupling strength
¢ = 0.2 and time delay T = 2.
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Fig. 2(a-c): Synchronization errors for the delayed

network withc = 0.5andt=1
Then, we start to consider a lower-dimensional

network model with five nodes, m which each node 1s a
simple three-dimensional system as follows:

X, =—(2—cos(h))x,
X, =—(3-cos(t)x,

X, =—{4—cos(t)x,

and its Jacobian is J(t) = diag {-2+cost -3+cost -4+cost}.
Here, the time-varying inner-coupling matrix and the
outer-coupling matrix are the same as the above example.
Then, we will make sure whether the conditions of
Theorem 3 are satisfied.

Let ¥ = (v}, ¥3, v3) be a nonzero three-dimensional
vector, then:

T
J+2J y" = (=2 + cosit)y?

+(=3 + cos(t)yl + (4 + cos(D)y: < 0

¥

Obvicusly, I(t) is a continuous periedic function
matrix. From Lemma 3, we know that zero solution of
system 25 13 asymptotically stable. Secondly, we will make
sure whether the condition 2 of Theorem 2 1s satisfied.
The rest part is similar to the above example. Therefore,
the synchronized states 8 of network 5 are asymptotically
stable. In Fig. 2, we also plot the cwves of the
synchronization errors between the states of node i and
node i+1 with the coupling strength ¢ = 0.5 and time delay
=1

CONCLUSION

This study mainly focused on the synchronization
of complex dynamical networks with time-varying
inner-coupling functions and time delays. According to
the stability theory of the linear time-delay system, we
have obtained new general stability criteria. By means of
these criteria, we have avoided constructing the
Lyapunov function, to investigate the stability of
synchronization state. And two examples are numerically
investigated.
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