http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan




Information Technology Jownal 12 (23): 7918-7921, 2013
ISSN 1812-5638 / DOL: 10.3923/1).2013.7918.7921
© 2013 Asian Network for Scientific Information

Modified Bacterial Foraging Optimization for Constrained
Portfolio Optimization

'Lijing Tan, *Ben Niu, 'Fuyong Lin, *Qigi Duan and *Li Li
'Management Scheel, Jinan University, Guangzhou, China
*College of Management, Shenzhen University, Shenzhen, China

Abstract: Bacterial Foraging Optimizer (BFO) 1s a very recent swarm intelligence technique mnspired by the
foraging behavior of Escherichia coli (F. coli). The key step in BFO is the chemotaxis movement of bacteria,
which models a trial of solutions of the optimization problems. Based on our previous work, we proposed a
modified BFO (MBFQ), where a linear decreasing chemotaxis step mechanism is incorporated into run and swim
step of chemotatix cycle of original BFO. To illustrate the efficiency of the proposed algorithm, a constrained
Markowitz model with transaction fee and short sales were taken as a test example. On the basis of the numerical
results, we can conclude that the proposed method can provide the more flexible and accurate results than

those obtained by original BFO and PSO.
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INTRODUCTION

Portfolio Pptimization (PO) consists of the portfolio
selection problem in which we want to find the optimum
way of investing a particular amount of money in a given
set of securities or assets (Fernandez and Gomez, 2007).
PO problem 1s NP-hard and non-linear with many local
optima. Many researches have attempted to solve this
problem with a variety of techniques,
decomposition, cutting planes, interior point methods ete.
The advent of Evolutionary Computation (EC) had
ingpired as a new technique for optimal selection of
portfolio assets, mcluding Genetic Algorthms (GA),
simulated annealing, newral networks and others.

In this study, we mvestigate the ability of a new
evolutionary computation technique, called Bacterial
Foraging Optimizer (BFO) to deliver high-quality solutions
for the portfolio model with two additional constrains.
BFO 18 mspired from the foraging strategies of the E. coli
bacterium cells and is claimed to have a satisfactory
performance in optimization problems (Passino, 2002).

In the original BFO the chemotaxis step length is set
as a constant value. There 1s no any mechamsm to keep
the balance of global search and local search and this will
also restrict the BFQ applying in complex optimization
problems. To further mnprove the performance of the
original BFO, an improved BFO with the chemotaxis step
varying dynamically as linear functions of iterations was
firstly proposed to improve the performance of orignal
BFO (Niu et al., 2010).

such as

However, this mechanisim is only limited to be used
1n the run step of chemotaxis cycle of BFO. In this study
we extend it into the whole chemotaxis movement to
further improve its search performance. To demonstrate
the performance of the proposed modified BFO (MBFO),
1t was used to obtain the best solutions of an imporved
Markowitz’s mean-variance portfolio optimization model
with the transaction fee and no short sales. The results
obtained by BFOs are also compared with other heuristic
algorithms.

BACTERIAL FORAGING OPTIMIZATION

Based on the biology and physics underlying the
foraging behaviour of E. coli bacteria, Passino and Liu
(Liu and Passino, 2002) exploit a variety of bacterial
swarming and social foraging behaviours. In the bacterial
foraging process, four motile behaviour (chemotaxis,
swarming, reproduction, and elimination and dispersal) are
mimicked.

Chemotaxis: A chemotactic step can be defined as a
tumble followed by a tumble or a tumble followed by a run
lifetime. To represent a tumble, a unit length random
direction, say, ¢ (j) is generated; this will be used to
define the direcion of movement after a tumble. In
particular:
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where, 0' (j, k, 1) represents the ith bacterium at jth
chemotactic kth reproductive and lth elimination and
dispersal step. C (1) 13 the size of the step taken m the
random direction specified by the tumble (run length umt).

Swarming: F. coli cells can cooperatively self-organize
mto  highly structured colomes  with
environmental  adaptability using an
commumecation mechanisms (e.g., quonuN-sensing,
chemotactic signalling and plasmid exchange). Roughly
speaking, the cells provide an attraction signal to each
other so they swarm together. The mathematical
representation for swarming can be represented by:

elevated
intricate

1. @:.P(k, )= iJ;C(e,e‘ (3.k.1)
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where, T, (B, P (j, k, 1)) is the cost function value to e
added to be added to the actual cost function to be
minimized to present a time varying cost functior, S 1s the
total number of bacteria, p 18 the number of parameters to
be optimized which are present in each bacterium, and
eract> Watrars DNzpelents Weepeler: a1€ different coefficients that are
to be chosen properly.

Reproduction: The least healthy bacteria die and the other
healthier bacteria each split into two bacteria, which are
placed in the same location. This makes the population of
bacteria constant.

Elimination and Dispersal: Tt is possible that in the local
enviromment, the lives of a population of bacteria changes
either gradually (e.g., via consumption of nutrients) or
suddenly due to some other influence. Events can occur
such that all the bacteria in a region are killed or a group
1s dispersed mnto a new part of the environment.

In order to improve the searching performance of the
basic BFO, of which chemotaxis step length was setto a
constant, we used a novel bacterial foraging optimizer
with linear decreasing chemotaxis step (Niu et al., 2010) in
this study, which allows each bacterium keeps a good
balance between exploration and exploitation during
algorithmic execution by decreasing its run-length umt
linearly.

In this improved BFO, the chemotaxis step length
starts with a high value C, . and linearly decreases to C,
at the maximal number of iterations. The mathematical
representations of the BFO method are given as shown m:

Table 1: Pseudocode for the BFO/MBFO algorithm

FOR (/=1:1)
FOR ()=1:K)
FOR (1.0
FOR each bacterium i
Tumble: Generate a random vector A(i)cRY with each element.
A, (D), m=1,2 ... D,arandom munber on [-1, 1].
Run: Let:

B+ 1Lk, =0 Gk, I+ ClLk, DA /ATA
Swim: Let m = 0 (counter for swim length).
While (m<N,) m=m+1
I, jk, <l then
T =T (@ jtk, D;

G+ 1k, 1) = 6.k, I+ CAG) FATA

Calculate the new J (1, j+1, k, ) using 8! (j+1, k, )
Flse

let m=N,

END

END
END
END
END
END

. iter,, — iter
=y + o M 3
iter

where, iter, _, is the maximal number of iterations, iter is the
current number of iterations, j is the j* run step. With
Chm = Chae the system becomes a special case of fixed run
step length, as the basic proposed BFO algorithm. Tn the
previous work, this mechamsim 1s only limited to be used
in run step of the chemotaxis cycle. However, in
chemotaxis cycle swim step 1s also a very import step to
fine tuning the local search. In this study we extend the
linearly decrease mechamsm into the whole chemotatic
movement to keep a right balance of the global search and
local search. From hereafter, this improved BFO algorithm
will be referred to as Modified Bacterial Foraging
Optimizer (MBFO). The Pseudocode for the MBFO
algorithm is listed in Table 1.

MBFO BASED PORTFOLIO OPTIMIZATION

Constrained PO model: The portfolio optimization
problem is one of the most important issues in asset
management, which deals with how to form a satisfying
portfolio. Modern portfolio  analysis  started from
pioneering research work of Markowitz. In this section the
model will be described. It has been mentioned that the
proposed model 13 based on Markowitz’s mean-variance
portfolio selection model which doesn’t consider the
situation of a real market as no short sales and mimmum
transaction lots. To deal with this 1ssue, n this study we
consider an 1mproved Markowitz’s
portfolio selection model with transaction fee and short

mean-variance
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sales (Niu et al, 2009). In order to explain the proposed
model let:
n 1s the number of assets available;
1, 1s the return of asset1, andi1=1,2,.... n,
R=R,,....R), R =E (1) is the expected retirn of asset

g, = cov (1, 1;) 18 the covariance of r; and r;;

K=[xn..... » X, ;18 the proportion in the portfolio
invested in asset 1;

k=(k,..... , k), k, is the transaction cost of asset 1;

A 18 the risk aversion parameter that distributed in
[0,1].

Based on these defined variables, the function f (x)
and g (x) denote the revenue and risk in the portfolio
optimization problem can be determined using Eq. 4 and
5, respectively:

f(x):iRlxl-Z“;k,x, 4

g(x)= Z“:Z“:Gu.xlx] (5)

i=l i=l

The improved portfolio optimization model can be
formulated as:

minF(x)=min{Ag(x)-(1-A)f (x)}
é;x,:l; (6)

0<x,.

where, 0<x, means no short sales.

Bacterial encoding: Tn order to apply the BFO algorithms
to the above mentioned model, we have to encode the
potential solution into a bacterium. We simply encode a
solution of proposed PO model as an n-dimensional
vector, where each variable represents the holdings of
asset] in the portfolio. The position of the bacteria
0 (j, k, 1) presents the proportionment of each asset. The
quality of a solution is measwred by the variance of the
portfolio.

ILLUSTRATIVE EXAMPLES

Parameter setting: To test the effectiveness of MBFO we
used a test data set by considering the stocks mvolved n
five different capital market indices drawn from around the
world (Niu et al., 2009). The MBFO approach of this study
has been compared to two other approaches, Bacterial
Foraging Optimization (BFO) and Particle Swarm
Optimization (PSO).

Table 2: Numnerical results with A =0.2

BFO PO MBFO
Best -4.432:-002 -4.4732-002 -4.47331°-002
Worst -1 255002 -4 0462002 -1.47328-002
Mean -4.341°-002 -4.402:-002 -4.4733(r-002
Std 3.9142-004 1.091°-003 52461 2-008
Risk 1.016-001 1.027:-001 1.0087:-001
Table 3: Numnerical results with A = 0.8
BFO PSO MBFO
Best -1.718-003 -1.761°-003 -1.76128-003
Worst -1.442:-003 -9.629°-004 -1.76127-003
Mean -1.607-003 -1.665°-003 -1.76128-003
Std 7127005 1.609%-004 8.80746-010
Income 5.328-002 2.103%-002 2.1042°-002
Risk 2.755°-002 3.055%-003 3.0589°-003
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Fig. 1. MBFO, PSO and BFO rate of convergence with
A=02

In the experiment, k was set to 0.075% and the
different risk preference was considered. Two values of
risk factors A were used to identify the different kinds of
investors, 1.e., 0.2 and 0.8.

For PSO, the inertia weight w started from 0.9 and
ended to 0.4 and a setting of ¢, = ¢, = 2.0 was used. For
BFO and MBFO, chemotaxis step, reproduction step, the
number of elimination-dispersal and the elimination-
dispersal probability were set as 100, 2, 2, 0.5,
respectively.

In MBFO, we chose C_,=12and C = 2.0. The
max iterations of the three methods were set to 200, A
total of 20 runs for each experimental setting were
performed.

Experimental results: Numerical results with different A
obtained by the BFO, PSO and MBFO are shown in the
Table 2-3, including the max value, the min value, the
mean value, the standard deviation, the proportionment of
the five assets, the income percent, and the risk percent.
Fig. 1-2 present the mean relative performance with

different A.
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Fig. 2: MBFO, PSO and BFO rate of convergence with
A=08

In the tables, the smallest standard deviation can be
found n MBFO, which indicate the strongest robustness.
This method also gave the smallest mean value among the
three, which means most precise results. Tt is clear that for
almost all the different nsk preferences, MBFO outperform
PSO and BFO. From Fig. 1, 2, it is obvious that the
convergence rate of MBFO in different situations
compared with PSO and BFO is much faster.

CONCLUSION

In this study, we proposed a new variant of original
BFO, 1e, MBFO that employs linear varation of
chemotaxis step length during the step of swim and run of
the whole chemotatic movement. MBFO is then employed
to solve the portfolio optimization. We also used an
improved Markowitz model considering two real-world
constraints to test ow proposed algorithm. The
preliminary experimental results suggest that MBFO have

superior features, both in high quality of the solution and
robustness of the results.
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