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Abstract: The velocity estimation is an important problem in many applications such as communication and

navigation. But in some application such as sea, this task is very difficult because of the strong clutter. Many
algorithms have been proposed for this problem. The Maximum Likelihood (ML) is one of the good solutions.
This paper describes an application of Neural Network (NN) for obtaimng the global optimal solution of ML
velocity estimation. It overcomes the local optima problem existing in some ML velocity estimation algorithms
and improves the estimation accuracy. The computation complexity is modest.
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INTRODUCTION

Motivated by the MIMO techmque in commumcation
systems, the two new concepts of MIMO radar are
introduced. One is transmitting diversity MIMO radar, the
other one 1s receiving and transmitting diversity MIMO
radar. The proposed MIMO radar enjoys the same
benefits that MIMO commumecation systems have.
Specifically, the transmitting diversity MIMO radar can
greatly improve the radar’s performance over traditional
radar on anti-intercept of radar signal, weak target
detection, etc.

In many applications such as radar and navigation,
the estimation of target velocity is one of the important
problems. Lots of techniques for this problem have been
proposed over past decades. The Maximum Likelihood
technique is one of the first to be investigated and best in
theory. Nonetheless, because of the high computational
load of the multivariate nonlinear maximization problem
involved, it does not become popular. Instead, suboptimal
method with reduced computational load have governed
the field. The better known ones are the MUSIC method
of Schmidt (Schmidt, 1986) and the minimum norm method
of Reddi (Reddi, 1979) and Kumaresan and Tufts
(Sharman, 1988).

However, the MI. method over-performs other
methods in many aspects (Schweppe, 1968), especially,
when the target echo 1s very small or when the noise or
clutter is very strong. In fact, many techniques cannot
deal with the circumstances of coherent signals.

Many researchers have proposed various algorithms
to maximize the likelihood function, wanting to guarantee

global convergence within less computing time.
Alternating projection method (Ziskind and Wax, 1988),
simulated annealing algorithm (Godara, 1997), grid search
approach, data-supported grid search (Stoica and
Gershaman, 1999), can approximately obtain the ML
estimation. But most of them cammot guarantee global
convergence in general case(Stoica and Sharman, 1990).

In this study, a global optimization of neural network
(Kumaresan and Tufts, 1983) 15 developed to search for
the nonlinear global optimization solution of the maximumn
likelihood in radar application. The target velocity is
estimated from the received signal of the array (Shi and
Eberhart, 1998). And then, we study the performance of
AN algorithm.

SIGNAL MODEL

Consider an array constituted of M sensors with
arbitrary locations and arbitrary directional characteristics
and assume that T, narrow-band plane waves arriving on
the array from locations 6, 0,,..., 6, and the velocity of
the target 15 v, v,,..., v, according to the s.

Since narrow-band in the sensor array context means
that the propagation delays of the signals across the array
are much smaller than the reciprocal of the bandwidth of
the signals, it follows that the complex envelopes of the
signals received by the array can be expressed as:

X(t):ZL: a(8,)s, (t)- €™ +n(t) (1)

k=l

where, x(t) 1s the M =1 vector:
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X(t) = [0, % (s Xy (O] 2)

where, T is the transpose. And a(0,) is the steering vector
of the array toward direction 0,.

e - 3)
=[a, (8,)e ™1 [ a, (6, Je Tl T

n(t) = [m(t), nt)..... nu(OT" )

Here:

x(t) = The signal received by the ith sensor

Si(t) = The signal emitted by the kth source

a(08,) = The amplitude response of the ith sensor to a
wavefront impinging from location 6,

The noise at the 1th sensor

n(t)

Then, consider of the clutter signal, it is similar to
target echo. But it is a random signal which can be
described by a coefficient ;.

CORS a0, (5)
k=l
So, the signal received can be expressed as:
X3 (6, )5, (O™ +C(t) + () (6)

The vector of the received signals x(t) can be
expressed more compactly as:

x(t) = A(®s(t)+n(t) (7)

where, the A(®) is the ML matrix of the steering vectors
A = [a(0,...., a(0)]. And s(t) 1s Lx1 vector of the
signals s(t) = [3,(t),..., s.(t)].

The localization problem is to estimate the locations
0, 0,0, of the sources from N samples ("snapshots")
of the received signals. The maxmmum likelihood
estimation of the source localization problem is derived as:

® = ang{max L(T)} )

=arg {mTax tr(PyryR3}

where, tr[] 18 the trace of the bracketed matrix,
Pue = A@NAT (AB)™ AT is the projection operator
onto the space spanned by the columns of the matrix

A(O):

1 N
R= gZH Xt ()

15 the sample covariance matrix and H denotes the
Hermitian conjugate. In this paper, we use the proposed
PSO algorithm [11] as the optimization tool, searching for
the global optimal solution.

NEURAL NETWORK ALGORITHMS

The theory of linear optimum filters is based on the
mean-square error criterion. The Wiener filter that results
frem the minimization of such a criterion and which
represents the goal of linear adaptive filtering for a
stationary environment, can only relate to second-order
statistics of the input data and no higher.

This constraint limits the ability of a linear adaptive
filter to extract information from input data that are
non-Gaussian. The use of a Wiener filter or a linear
adaptive filter to extract signals of interest in the presence
of such non-Gaussian processes will therefore yield
suboptimal solutions. Despite its theoretical importance,
the existence of Gaussian noise is open to guestion.
Although, by so doing, we no longer have the Wiener
filter as a frame of reference and so complicate the
mathematical analysis, we would expect to benefit in two
signmficant ways: improving learmning efficiency and a
broademng of application areas.Moreover, non-Gaussian
processes are quite cominon in many signal processing
applications encountered m practice. We may overcome
this limitation by incorporating seme form of nonlinearity
in the structure of the adaptive filter to take care of higher
order statistics.

This termmology 1s derived from analogy with
biological newral networks that make up the human
brain.In this section, we describe an important class of the
nonlinear adaptive system commonly known as artificial
newral networks or just simply neural networks.

A neural network 13 a massively parallel distributed
processor that has a natural propensity for storing
experiential knowledge and making it available for use.
The neural network filter consists of a feed-forward neural
network with two layers.

The Hopfield model neural network is a single layer
of fully inter-connected neurons that update their outputs
upon sampling the outputs of other neurons in the
network, via the synaptic link.

The synaptic link between the ith and the jth
neurons, in a network of P neurons, form a symmetric
matrix T which elements obey follow formula:

7984



Inform. Technol. J., 12 (24): 7983-7988, 2013

tl] = _tij; tii = 1 (9)

The network changes state using the following
dynamic equation:

du, X
C; " =Ej:l(u-w-+N1 (10)

1

where, Matrix C is the input capacitance of the ith neuron,
Ii 15 the external input and 1s the internal state of the
neuron. The output state v1 of the neuron 1s given by the
following nenlinear transformation:

1
Vi T8 < 5

1+ e—Fl (1 1 )
for v, e {—1,+1}

where, g, 1s the sigmoid transfer function of the ith neuron
and 1/m is the gain of the neuron. The network dynamic
equation defines a complex system but it is possible to
find an energy function satisfying the Liapunov’s
stability criterion:

E:*%ZZW“V‘VJ*E\QI] (12)

The back-propagation algorithm has emerged as the
workhorse for the design of a special class of layered
feed-forward networks known as multilayer perceptions.
Input layer of nodes, which provide the means for
connecting the newral network to the source(s) of signals
driving the network. Output layer of processing umits,
which provide one final stage of computation and thereby
produce the response of the network to the signals
applied to the input layer.One or more hidden layers of
processing umts, which act as “feature detectors”.

The processing umts are commonly referred to as
artificial neurons or just neurons. Typically, a neuron
consists of a linear combiner with a set of adjustable
synaptic weights, followed by a nonlinear activation
function; two commonly used forms of the activation
function ¢ {e} are shown in Fig. 1.

The first one, shown in Fig. 1, is called the hyperbolic
functior, the decision space of a P-neuron network is
represented by a P-dimensional hypercube D([0,1T). The
network starts from some initial state within D([0,1]%) and
developed towards one of the corners that corresponds
to mimimum. Each comer of this hypercube represents a
possible digit output state of the network; one of these

Fig. 1: Fully comnected feed-forward of acyclic network

corners represents the solution state and one or more of
the other comers represents the local-mimma of the
energy fimetion.

For a digit neuronal trader function, the global
minimum must be one of the comers of the hypercube. Yet
provided that the newonal gain i1s high enough to
eliminate the perturbation of the digit energy function, the
analog network can be replaced by digital network.

However for an analog network with a sigmoid
transfer function, due to the reason of an analog transfer
function represent a perturbation to the energy function;
the global minimum must not be one corner of the
hypercube.

Therefore the global minimum may be thought to be
one of the commers of hypercube. Then after the
computation of the energy of all formula, the P is the
global minimum which we need We can calculate the
energy of all m e m on the hypercube directly so long as
the P 1s not very large.

Here we call it Energy Comparing method
(ECM). The advantage of ECM that any other modification
doesn’t pose 1s that it ultimate the local mimmum
completely. And the computational complexity does not
increase obviously so long as the number of newrons is
not very large.

For the pulse radar, first supposed that the target
moves so slowly that the return sequences of the target
inthe H times Pulse repetition interval PRI are at the same
position.
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The changing pattern of the return sequences of the
target will manifest some specific distributions in the
amplitude and frequency feature spaces. Forth more, the
distribution will possess considerable stability m a
distance range.

Supposed is the column vector composed of the t,
sampling point in the each retwn sequence. The
effectiveness of feature extraction 1s guaranteed when the
network is solved with the ECM. Of course, the best way
of coding is that the distinct feature will be shown clearly
after coding.Since the output of the network 13 zero and
one, the features may be coded by the natural order of the
output of the Hopfield networks.

When we have not any priori knowledge about the
feature distributions, we may use the above codmng
method. The course of synthesizing two kinds of distinct
features is, in fact, a course of features integration which
transforms distinct input feature spaces into the sanie
output space so as to make detection and decision.

Consider the simple case of a continuous function
mapping from a 2-dimensional z, y input space to a
1-dimensional z output space. Tt is theoretically possible
to model this mapping with a munber of 2-dimensional
radial functions. Our networks use Gaussian radial
functions which, in 2-dimensions, look like bumps or hills.
A radial function is one whose evaluation depends upon
a radial distance from the function center.

RBF networks use memory-based learming for their
design. Specifically, learning is viewed as a curve-fitting
problem in high-dimensional space. Another popular
layered feed-forward network 1s the Radial-basis Function
(RBY) network, whose structure 1s shown in Fig. 2.

Leaming is equivalent to finding a swface in a
multidimensional space that provides a best fit to the
training data 2. A commonly used formulation of the
RBFs, which constitute the hidden layer, is based on the
Gaussian function. Generalization (i.e., response of the
network to input data not seen before) is equivalent to the
use of this multidimensional surface to interpolate the test
data.

To be specific, let u denotes the signal vector applied
to the mput layer and v, denote the center of the Gaussian
function assigned to hidden wut 1.

A velocity estimation network comsists of three
layers of nodes, input, Gaussian and output, which are
fully-connected by two layers of arcs, center and weight.
“Fully-connected” means all nodes in layer i are
connected to all nodes in layer i+1. The function space is
primarily shaped by the Gaussian nodes. There are no
connections between nodes in the same layer.

Input layer

Hidden layer of
m, radial-basis

Output layer

Fig. 2: RBF network

The input nodes, 1, in the velocity estimation network
accept preprocessed input data and fan it out to the
center arcs. The center arcs connect each input to each
Gaussian node and calculate the distance for that
dimension from the current mput value to a given
Gaussian, k, 1.e.:

C, - L-m, (13)

The use of a linear output layer in an RBF network
may be justified in light of Cover’s theorem on the
reparability of patterns. According to this theorem,
provided that the transformation from the input space to
the feature (hidden) space i3 nonlinear and the
dimensionality of the featwre space is high compared to
that of the input (data) space, then there iz a high
likelihood that a no separable pattern classification task in
the input space is transformed into a linearly separable
one m the feature space or zero, that Gaussian is
“relevant” to the answer, 1.e. it’s center in the function
space is near the current input. Gaussian node H
computes the following exponential.

SIMULATION

In order to demonstrate the performance of the ML
estimator computed by owr proposed NN algorithm, some
simulation 1s used .

In the experiments, the array is linear and umform
with three isotropic sensors spaced a wavelength apart.
The sources are two equal power narrow-band emitters
and the noise is additive and uncorrelated from sensor to
sensor and with the signals.
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Fig. 3: Two equal power uncorrelated emitter, v, = 100
msec . v, = 100 msec™’, the x-axis denotes SNR,
y-axis denotes RMS errors
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Fig. 4: Same scenario as m Fig. 5. The SNR 15 20 dB, the
x-axis denotes snapshots, y-axis denotes RMS
erros

In every experiment we perform 5000 Monte-Carlo
runs anad compute the root-mean-square (RMS) error for
each velocity value. In all the experiments, the layer of
neural network size is 40. All initial estimations are taken
from the interval:

[2.5]

randomly. And the iteration time 1s 300 for the experiment.

In the first experiment we simulate two target with
velocity of v, = 100 msec™. v, = 100 msec™" the number of
snapshots taken is 10. Figure 3 shows the resulted rms
error (in degrees) of the first sowrce as a function of the

SNR, defined as SNR = 10log(s*/6°) (where s° and ¢° are
the average power of the signals and the noise,
respectively). The improved performance of the NIN based
ML estimator at low and moderate SNR is evident.

In the second experiment, the scenario 1s the same as
1n the first one, except that this time we fix the SNR to
20 dB. Figure 4 shows the resulted rms error of the first
source as a function of the number of snapshots.

From the experiment, we can see NN algorithm
outperforms AP algorithm. Moreover, in our experiment,
AP algorithm sometimes does converge to a local
optimum. And we solved it successfully by NN
algorithms.

CONCLUSION

We have proposed a new algorithm for computing
the ML estimator of the direction of multiples source in
the far field. The algorithm 1s iterative. The convergence
of the NN algorithm to the global maximum is verified. The
initial guess
algorithm’s convergence. This is conspicuous advantage
over traditional algorithm. The complexity involved in
each iteration is modest.

of direction does not influence the
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