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Abstract: In order to improve the spatial resolution of videos, utilizing the sub-pixel movement information

between the low-resolution frames and the blur function of the imaging system, a blind video super-resolution
reconstruction method 1s proposed. Firstly, through Taylor series expansion and least square solving method,
the movement parameters between the adjacent frames in the sliding window are estimated from coarseness to
fine. Secondly, according to the error-parameter cwrves generated through Wiener filter image restoration
method, the parameters of the Point Spread Function (PSF) of the reference frame in the sliding window are
estimated. Fmally, super-resolution frames are reconstructed through Iterative Back Projection (IBP) algorithm.
Experiments are performed on simulated low resolution images and standard test video and practical video,
respectively. The results demonstrate the effectiveness of our approach and show the great importance of
Gaussian blur estimation in video super-resolution reconstruction.
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INTRODUCTION

To acquire high quality video, cameras must work at
a reasonable frame-rate and with a reasonable depth of
field. These requirements impose fundamental physical
limits on the spatial resolution of the gained video by
current cameras. In order to improve the spatial resolution
of videos, the direct way is to enhance the precision and
stability of the imaging system. However, increasing the
number of pixels of the detector will reduce the amount of
the light and hence increase the noise and widening the
aperture to increase the amount of light incident on the
detector will significantly reduce the depth of field.

Super-resolution 18 an efficient approach to
transcend the limitations of the optical imaging systems
through digital image processing algorithms which is
relatively inexpensive to implement (Tian and Ma,
2011). Video super-resolution refers to producing a
high-resolution video from one or multiple low-resolution
videos which has become one of the hot research areas
1n image processing and computer vision. Qin et al. (2009)
proposed a segmental video super resolution
reconstruction model and a framework of video super
resolution reconstruction method based on sub-pixel
registration and iterative back projection. (Qin et al.,
2009). Xiong et al. (2010) proposed a robust
single-image super resolution method for enlarging
low quality web image or video degraded by
downsampling and compression (Xiong et al, 2010).
Keller et al. (2011) proposed an energy-based algorithm
for motion-compensated video super-resolution targeted

on wupscalng of standard defimtion video to
high-definition video (Keller et al., 2011). Cheng et al.
(2011) proposed a video super resolution reconstruction
approach using a mobile search strategy and adaptive
patch size (Cheng et al, 2011). Zhang et al. (2012)
proposed a SR framework for video sequence by
extending the 2-dementional normalized convolution to
3-dimentional case (Zhang et al., 2012). Chen et al.
proposed a video SR using generalized Gaussian Markov
random fields (Iin et al., 2012).

In many practical applications, the restoration
problem is always blind. This means that the blur function
of the imaging system is most likely unknown or is known
only some parameters of the Point Spread Function (PSF).
In many super-resolution reconstruction algorithms, the
more accurate the imaging system is estimated, the better
performance the reconstruction algonthms will achieve. In
most of the current algorithms, the motion and down
sampling process of the imaging system are mainly
considered and the sub-pixel movement information
between the low-resolution frames is estimated to
reconstruct a high-resolution frame. However, the blurring
process of the imaging system is assumed to be a known
PSF with given parameters in most algorithms, or is not
considered at all in some algorithms. Both cases do not
meet the real mmaging model of the optical devices in
practice. Blind video super-resolution reconstruction
problem arises naturally and is expressed as estimating a
high-resolution and the bluw function
simultaneously. The foremost difficulty of blind
de-blurring is rooted in the fact that the observed image

video

8058



Inform. Technol. J., 12 (24): 8058-8065, 2013

is an incomplete convolution. The convolution
relationship around the boundary is destroyed by the
cut-off frequency (Zou, 2004) which makes it much more
difficult to estimate the blur function. Thus, blind
super-resolution reconstruction has become one of the
advanced issues and challenges in this technique and a
satisfying solution to this problem has not been well

solved yet (Gianmoula, 2011; He et al., 2009).

The super-resolution reconstruction algorithms
mainly include the frequency domain method and the
spatial domain method. The latter s researched

extensively and mainly imcludes non-umform
interpolation, adaptive filtering method, wavelet
super-resolution etc. Among then, TBP has the virtues of
small amount of calculation, fast convergent speed,
automatically de-noising etc. It meets the real time
requirement and can be well used in video
super-resolution reconstruction. In IBP method, the
estimated high-resolution frame 1s projected onto the
low-resolution imaging model to generate multiple
simulated low-resolution frames and then the simulation
error is back-projected onto the high-resolution image
grid. With the convergence of error, a super-resolution
frame 1s gained. Thus, if the low-resolution imaging model
is estimated more accurately, the quality of the
reconstructed video will be better. In addition to estimate
the movement between the frames accurately, the blur
function of the 1maging model needs to be estimated, but
this is seldom done in many studys. As Gaussian PSF is
the most common blur function in many imaging systems,
the parameters of Gaussian PSF are estimated in this
article. Utilizing Wiener filter 1image restoration
algorithm,multiple error-parameter curves are generated at
different perameters. By setting a threshold of the
distance between curves, the size of the PSF is estimated
and by setting a threshold of the mcrement on the

estimated cwrve, the standard deviation of the PSF is
filter algorithm,
symmetric extension is performed on the observed frame
to restrain the parasitic ripple induced by the boundary
cutof to enhance the performance of Wiener filter
algorithm. This Gaussian blur estimation method may also
be well utilized to handle other types of blur, only if the
PSF can be denoted by parameters.

determined. In Wiener reflection

FRAMEWORK OF VIDEO SUPER RESOLUTION
RECONSTRUCTION

In this study, Iterative Back Projection (IBP)
super-resolution reconstruction method is adopted and
the blur function of the mmaging system 1s estimated to
enhance the performance of IBP. The basic idea of
IBP method is described as below. If the estimated
high-resolution frame is closed to the original
high-resolution frame, the simulated output low-resolution
frames gamned by the estimated high-resolution frame
under the low-resolution imaging model will be consistent
with the practical input low-resolution frames of the
imaging system. Projecting the simulation error onto the
high-resolution 1mage grid, with the convergence of error,
a super-resolution frame will be ultimately gained. Based
on this idea, the schematic diagram of TBP is shown in
Fig. 1.

where, f is the estimated high-resolution frame; P is
the number of frames of the sliding window in video
super-resolution reconstruction model; g;, 1 =1 =P, is the
ith practically observed low-resolution frame; § is
the 1th simulated low-resolution frame of f under the
low-resolution imaging model; (g —g) 1is the ith
simulation error; E, C and D are the matrix forms of the
motion, bluring and down sampling processes
respectively; ~' denotes the inverse operation, n is the ith
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Fig. 1: The schematic diagram of iterative back-projection method
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system noise, M is the ith back projection operator;
G 18 the summation of the back projections made by all of
the simulated images on the high-resolution image grid in
the current iteration.

According to Fig. 1, the low-resolution imaging
model may be expressed in matrix forms as follows:

g =DCEf+n =Mf+n,i<i<P (1)

The mathematical description of IBP algorithm 1s
expressed as:

P
P - AT G ) @

i=l

where, k 1is the iteration number;, % is the estimated
high-resolution 1mage in the kth iteration, A is the
gradient step. The relative error in the kth iteration is
defined as:
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The iteration process stops when the relative error is
less than a given threshold or the maximum iteration
number is reached.

In IBP algorithm, if the low-resolution imaging model
is estimated much more accurately, the quality of the
super-resolution video will be better. The simulation error
relies on the imaging model greatly. The back projection
operator 1s the key of the whole algorithm which ensures
the convergence of the iterating process and makes the
super-resolution reconstructed frame be closed to the
original high-resolution frame. However, due to the
ill-posed problem of the super-resolution reconstruction,
1t 18 very difficult to select thus back projection operator.
The best value of this operator is the reverse version of
the low-resolution imaging model, namely, M* = M ™"
Thus, the back projection operation (M,*) should include
the processes of up-sampling (D), de-blurring (C™') and
reverse metion (E; ™). In most studys, the down-sampling
and the motion processes of the imaging model are
considered only. However, the blurring process of the
imaging model is assumed to be a given PSF set by
subjectively, or 1s even not considered at all. Both cases
do not meet the real imaging model of optical devices.
Thus, estimation error will increase and the quality of the
reconstructed video will degrade. In the de-blurring
process, the PSF of the imaging model needs to be
estimated.

MOVEMENT REGISTRATION

The frame-to-frame movement registration algorithm
is very important in the whole process and its precision is
directly related to the quality of the reconstructed video.
As only pure translational transformation exists between
the adjacent frames in most videos, this case 1s
considered m this article. Let the reference {rame be
r(u’, v) and the unage to be registered be s(u, v), the
horizontal shift and the vertical shift between them are a
and b respectively. The rigid transformation model
between the coordinates of these two frames may be

denoted as:
{u}_{u}-{a} W
v' v b

Then, the mathematical relationship between these two
frames can be expressed as:

s(u,vy=r(u'vh=r{u+a,v+b) (5)

Two dimensional series expansion at (1,v) is made to
the right part of Eq. 2. Ignoring the ligh order terms, the
following approximate expression 1s gained:

ar ar
~ +a—+b— (6)
s(u,vi=r(u,vi+a

It may be rewritten as:

AX =8, A:{% %}, X—E},B— s(u,v)—r{u,v) (N

The solution of Eq. 4 can be solved through least square
method and the optimal estimated movement parameters
are )"(:[ﬁ B]‘ , where, a is the estimated horizontal shift,
b is the estimated vertical shift and t is the transpose
operator.

On one hand, in order to improve the computing
speed and enhance the robustness to noise, three-level
Gaussian pyramid image models are formed to the
reference frame and the frame to be registered
respectively. The movement parameters are estunated
from coarseness to fine. On the other hand, in order to
improve the precision of the registration algorithm, the
movement parameters are estimated through an iterative
approach in each level. Tn this method, the coarse levels
with low-resolution are used to determine the big
movement information and the fine level with
high-resolution is used to adjust the estimated movement
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parameters accurately. In this way, the optimal movement
parameters with high sub-pixel precision will be obtained.

GAUSSIAN BLUR ESTIMATION

Gaussian point spread function (PSF) is the most
common blur function of many optical measurements and
imaging systems. Thus, the estimation of Gaussian PSF 1s
mainly considered in this article. Generally, the Gaussian
PSF is expressed as:

1
him,n) = J2n0

explog 4’ (meR (g

0 others

where, o is the standard deviation; R is a supporting
region. Commonly, R may be denoted as a KxK
rectangular region, where, K is called as the size of the
PSF and is often an odd number.

From Eq. 8, we can see that two parameters need to
be estimated for the Gaussian PSF, namely, the size (K)
and the standard deviation (o). Because the Fourier
transformation of a Gaussian function is still a Gaussian
function, it is impossible to determine these parameters by
the zero-crossing point in the frequency domain. But in
many cases, the 1solated point and the intensity edges in
the observed image may provide the necessary
information to estimate the PSF. Tf the image and the noise
are assumed to be generalized stationary process, then
the Discrete Fourier Transform (DFT) method and Wiener
filter are used to estimate the restored image:

- HY (9)
[ +8,, /S,

where, X, Y and H are the DFT of the real image x, the
blurred image y and the blur function h respectively; *
denotes the conjugate operation; S, and S, denote the
power spectrum of the noise and the real image
respectively. As it is usually very difficult to estimate S,
and S_, X is usually approximated by the following
formula;

_ Y (10)
|H +T

where, I is a positive constant. The best value of " 1s the
reciprocal of the SNR of the observed image.

In Wiener filter restoration algorithm, m order to
restrain the parasitic ripple induced by the boundary
cutoff, the image needs to possess circular boundary. For
an observed mmage of size MxN, reflection symmetric

extension is performed on it to produce an extended image
of size 2M 2N and calculate its DFT Y. Given a size K of
the PSF, the error-parameter curve 1s generated at different
standard deviation 0. According to the error-parameter
curves at different sizes, these two parameters can be
estimated approximately. The estimation criteria is as
below: the size where the distance between the curves
decreases evidently 1s assumed to be the estimated size
and the standard deviation where the corresponding
curve mcreases obviously 1s assumed to be the estimated
standard deviation. Thus, we can set two thresholds T,
and T, to estimate these two parameters. Firstly, given an
estimation error e, the curve where once the distance
between curves is smaller than T, gives out the estimated
size g of the PSF. The distance is defined as the absclute
difference of the cycle number (j) of standard deviation at
e. Then, the deviation value needs to be estimated which
can be done by calculating the increment of the estimation
error at different standard deviations on the estimated
curve. The deviation once the increment 1s greater than
the threshold T, is the estimated deviation & . When the
original sizes of K are taken as 3, 5,7, 9, 11 and 13, the
Gaussian PSF estimation process is expressed as follows:

s  Step 1: Select a standard deviation range given by
the mimmum value 0, and the maximum value o__,
and Set a searching number 3, then Ao = (0,,,.-0,,.)/5
»  Step 2: Set the original sizes: K(1) =3, K (2) =5,
K3 =7K¥H=9,K(5=11,K(6)=13
s Step 3: Fori=1:6, execute Step 4; Otherwise, jump to
Step 5
»  Step 4 Forj = 1.5, execute Step 4.1to Step 4.5;
Otherwise, jump to Step 3
+ Step 4.1: Compute the current
deviation: 0 = g, +(-1)/ Ao
»  Step 4.2: According to Eq. 8, generate the PSF h
of size K(i) and standard deviation o
»  Step 4.3: Extend h to be the size of 2Mx*2N by
adding zeros and compute its DFT H
»  Step 4.4: According to Equation (10), estunate
the DFT of the real image X
s Step 4.5: Compute the estimation error: E(i, j) =
|Y-YH|}* and normalize it
»  Step 5: Plot the error-parameter (E-g) curves at
different sizes K
»  Step 6: Give an estimation error e and calculate the
distance between cwves. The curve once the
distance d is smaller than the threshold T, represents
the real parameters, from which the size § of the PSF
1s estimated
»  Step 7: Calculate the increment at different standard
deviations on this curve. Once the increment is
greater than the threshold T,, the deviation & of the
PSF is estimated

standard
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EXPERIMENTS

Experiments on simulated low-resolution images: In
order to test the performance of the algorithms in this
article, experiment is firstly performed on multiple
simulated low-resolution images.

For the test image ‘lena’ of size 256x256, in order to
avold the boundary effect caused by the motion process,
a zero window of size 16 pixels is added around the
original image. The gained image of size 288288 is the
simulated high-resolution image as shown i Fig. 2.

According to the low-resolution imaging model in
Fig. 1, five simulated low-resclution images are generated.
Firstly, this high resolution image is horizontally shifted
by a, and vertically shifted by b, according toe the
parameters n Table 1. Secondly, the shifted images are
convolved with a Gaussian PSF to simulate the blur
process. The original size K; of PSF is 7 and the original
standard deviation g, 1s 1.2. Thirdly, the gained images are
down sampled by a factor of 2. Finally, Gaussian
zero-mean white noise is added to each blurred images at
40 dB blurred signal-to-noise ratio (BSNR), where, the
BSNR 15 defined as:

BSNR = 10log,(Variance of the blwred image/Variance of
noise)

(1)

Taking the first image as the reference image, movement
registration is carried out to estimate the horizontal shift &
and the vertical shift b . The absolute estimation errors are
used to evaluate the precision of the registration
algorithm. The horizontal and vertical absolute estimation
errors are defined as:

Aa=|a, 4|
And:

Ab=

bn—f)‘

respectively. The gained estimation absolute errors are
shown in Table 2. The result shows that this registration
algorithm can achieve lngh sub-pixel precision.

The Gaussian PSF of the reference image is estimated
through the proposed method in Section ¢&. The original
sizes of PSF are taken as 3, 5, 7, 9, 11 and 13. The
searching munber S 1s taken as 50. The range of the
standard deviation is taken as [0.5,2], namely, 0., = 0.5,
0,..= 2. The estimation error e is 0.1. The thresholds are
T, =3 and T, = 0.015. The error-parameter curves of the

Fig. 2: The high-resolution image

Estimation error

o "
0.5 1.0 15 20
Standard deviation

Fig. 3: The error-parameter curves of the reference image

Table 1: The original movement parameters

Horizontal shift Vertical shift
Sequence No. (i) (a,) (in pixel) (b)) (in pixel)
1 0 0
2 -8.6974 -5.0926
3 4.0909 7.1342
4 -5.2904 6.5494
5 B.6912 -7.3714
Table 2: The estimated absolite estimation errors

Horizontal shift Vertical shift
Sequence No. (i) (a)) (in pixel) (b)) (in pixel)
1 0 0
2 0.0047 0.0018
3 0.0014 0.0014
4 0.0027 0.0052
5 0.0038 0.0046

reference image are shown in Fig. 3 which can represent
the parameters of the PSF approximately. The estumated
size K of the PSF is 7 and the estimated standard
deviation & is 1.19. The size of the PSF is estimated
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Fig. 4: The estimated PSF (K =7,§ =1.19)
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Fig. 50 The PSNR of the reconstructed at different
standard deviations (K = 7)

correctly and the estimation relative error of the standard
deviation ( |$ -o,//o,)) is 0.0083. The estimated PSF is
shown in Fig. 4.

Utilizing the sub-pixel movement information between
the low-resolution images and the estimated PSF of the
reference image, super-resolution image is reconstructed
through TBP algorithm. In order to verify the influence of
the PSF estimation on the quality of the reconstructed
image, while the estimated sizeK of the PSF is 7,
super-resolution reconstruction is carried out at different
estimated standard deviation § and the correspending
PSNR of the super-resolution reconstructed image 1s
shown in Fig. 5. We can see that the PSNR 1s the highest
around the real values of the PSF. Tf the parameters of the
PSF are far away from the real values, the PSNR decreases
greatly. When the estimated standard deviation is greater
than 2.3, the PSNR of the super-resolution reconstructed
image is even lower than that of the amplified image by
Rilinear interpolation to the reference image only.

The amplified image by Bilinear interpolation to the
reference image with a factor of 2 13 shown in Fig. 6a.

@

(b)

(d)

Fig. 6(a-d): The reconstructed images through bilinear
interpolation  and  super-resolution  at
different standard deviations (K = 7). (a)
Bilinear interpolation (PSNR = 33.7897 dB),
{b) SR image { 6 = 0.1, PSNR =34.6452 dB),
{c) SR image ( & =1.19, PSNR =35.4701 dB)
and (d) SR image ( ¢ = 4, PSNR=33.0961 dB)
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Fig. 7. The error-parameter curves of the reference frame

When the estimated size K of the PSF is 7 and the
estimated standard deviation § istakenas 0.1,0.5,1.19,
2 and 4, respectively, the corresponding super-resolution
reconstructed images are shown in Fig. 6 (b)-{d). From the
visual effect of the reconstructed image, we can see that
when the parameters of the PSF are estimated much more
accurately, the reconstructed image will be much more
closed to the real high-resolution. Otherwise, the
quality of the reconstructed image will degrade greatly.
When § is around the real value, the super-reconstructed
reconstructed image (c) has the best visual effect. When §

is much lower than the real value, the reconstructed image
(a) is blurred and illegible. When $§ is much larger than
the real value, ringing artifact and ghost effect are very
obvious in the reconstructed image (d).

Blind video super-reconstruction reconstruction:
According to the video super-resolution reconstruction
meodel, the first 100 frames m the standard test video
‘clair.avi® are reconstructed The size of each
low-regolution frame is 88 x72x3 pixels. The up-sampling
factor 1s 2. This means the size of each reconstructed
frame 18 176x144x3 pixels. The number of frames of the
sliding window P is taken as 5. The iteration number of
IBP is taken as 10. The original sizes of the PSF are taken
as 3,5,7,9,11and13. 0,;,= 0.5,0_,,=1.5,8=50,e = 0.1,
T,=3,T,=0015,

For convenient description, take the super-resolution
reconstruction of the 20th frame in this video as an
example. Utilizing the proposed PSF estimation algorithm,
the error-parameter curves of the reference frame in the
20th sliding window are shown in Fig. 7 and the estimated
parameters of the PSF are: ¢ =5and ¢ = 0.8%

The 20th amplified frame by Bilinear mterpolation 1s
shown in Fig. 8a. When the estimated size ¢ of the PSF is

Fig. 8(a-d): The 20th reconstructed frames through
bilinear mterpolation and super-resolution at
different standard deviations (8§ = 35), (a)
Bilinear interpolation, (b) Super-resolution
{6 =0.1), (c) Super-resolution { = 0.88) and
{(d) Super-resolution (§ = 3)

5, the reconstructed frame at different standard deviations
6 =0.1,6 =088 and & = 3 are shown in Fig. 8b-d,
respectively. The experimental result justifies the

importance of the PSF estimation n the quality of the
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super-resolution econstructed frame again. When the
estimated parameters are around the real values, the
reconstructed frame (¢) has the best visual effect. If the
estimated parameters are far away from the real value, the
reconstructed frame is illegible (b), or the ringing artifact
and ghost effect are obvious in the reconstructed frame

().
CONCLUSTIONS

A framework of blind video super-resolution method
15 proposed. The low resclution imaging model mainly
includes movement, Gaussian blur and noise. The video
reconstruction model, the registration
algorithm, the super-resolution reconstruction algorithm
and the PSF estimation method are researched.
Experiments are performed on simulated low-resolution
images and standard test video respectively. The results
demonstrate the reliability and effectiveness of the
proposed method. This registration algorithm achieves
high sub-pixel precision. The size and standard deviation
of the Gaussian PSF are estimated accurately through the
proposed PSF estimation method. It can also be
extensively used to handle other types of blur (such as
motion blur and defocus blur). Both the PSNR of the
super-resolution reconstructed image and the visual effect
of the super-resolution video show the great umportance
of the Gaussian blur estimation in super-resolution
reconstruction.

movement
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