http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 12 (24): 8081-8087, 2013
ISSN 1812-5638 / DOL 10.3923/1t).2013.8081.8087
© 2013 Asian Network for Scientific Information

Real-time Exchange of Mass Data in the Internet of Things

Hao Xu, Xuemiao Xu, Yuqgi Fan and Yulong Guo
School of Computer Science and Engineering, South China University of Technology,
Guangzhou, Guangdong 510641, China

Abstract: In this study, we design a novel real-time mass data exchange system for [OT. Compared to the
existing methods, our methed can achieve real-time data transmission while guaranteeing the high stability and
accuracy. Tt is designed with the following four unique improvements. First, by employing asynchronous socket
to allow connection from mass TCP clients, system resowce is significantly saved and efficiency is ensured.
Secondly, the concept of generic protocol is proposed to solve the problem of parsing protocols of various
formats, enabling our solution to be self-adaptable and well-extensible. Furthermore, we also propose a novel
three-level data storage model to handle concurrent access and modification to the cache space by multiple
threads. Lastly, to improve performance, we propose to reduce the number of database queries by utilizing the
mapping relationship between the termimnal IDs and the caches of the query and forwarding threads.

Key words: Internet of things, mass data, real-time exchange, multi-thread, data storage model

INTRODUCTION

The Internet of Things (I0T) (Ashton, 2009) 1s
the connection of mass sensor devices that
communicate through the Internet and has the capability
of identifying, tracking down, monitoring and managing.
The IOT's techmcal architecture mainly consists of three
parts: the perception layer, the network layer and the
application layer. However, data communication between
the network and perception layer involves plenty of
terminal devices and application servers, which leads to
several challenges. First, the continuous data flow from
the large amount of terminal devices may easily reach
the data load bottleneck for an application server.
Secondly, thousands of applications may require the data
from the terminal devices to be distributed to different
servers deployed at different domains. Moreover, the
correspondence between the terminal devices and servers
15 updated dynamically. A common solution to these
problems is to set up a server group (2002, 1999) and
appoint independent servers to receive the data uploaded
by different termmals. This solution could relieve the
burden on mdividual servers to some extent. However,
unfortunately, since it requires every terminal device to be
re-configured of its own binding server TP, while the
nurber of terminal devices 13 very large and they are
geographically dispersed, this makes tlus solution barely
feasible in practical.

To avoid this problem, we propose the usage of data
exchange techmology to aclieve ligh quality

communication between the terminal devices and the
server group. Figure 1 takes the traffic momtoring platform
as an example and shows owur data exchange system which
automatically distributes the satellite positioning data
uploaded by every on-board terminal to its corresponding
application server. However, our exchange system is
faced with twe difficulties, the mass data and real-time
exchange. The mass GPS data from on-beard terminals are
likely to cause congestion in the system and disable the
data exchange of being real-time.

Data exchange 1s an active research topic due to the
increased need for exchange of data in various
applications. Researchers attempted to apply the data
exchange technology to practical applications
(Miller et af., 2001) and also discussed some theoretically
foundational problems in data exchange (Kolaitis, 2005).

“ Application server v
“ Application server
II Data exchange

Client monitors system

Application server Onboard terminals

Fig. 1: Multi-application server array based on the data
exchange system

Corresponding Author: Xuemiao Xu, School of Computer Science and Engineering, South China University of Technology,

Guangzhou, Guangdong, 510641, China

8081

Inform. Technol. J., 12 (24): 8081-8087, 2013

As for practical applications, a system Clio for data
exchange was built (Miller et al., 2001 ; Popa et al., 2002)
and partly mcorporated mto the IBM's db2 product;s
He et al. (2005) have proposed a secure data exchange
system that can block away viruses and attackers and can
isolate the internal and external databases; Zhang et al.
(2000) have proposed an Intermnet-based STEP data
exchange framework for virtual enterprises which are
based on various computer systems. Amer-Yahia and
Kotidis (2004) proposed an efficient XMI. data exchange
method and applied it to business applications. As for the
study of theoretical foundations, it was started with the
influential papers by Fagin et al. {(2003). They laid the
theoretical foundation of exchange of relational data
(Fagin et al, 2003) and studied various 1ssues in data
exchange such as schema mappmg composition
(Fagin et al, 2004) and query rewriting (Arenas et al,
2004; Yu and Popa, 2004). Arenas and Libkin (2005)
looked mto the basic properties of XML data exchange
and investigated the consistency problem and determined
its exact complexity. Kolaitis et al. (2006) explored the
complexity of data exchange. Libkin (2006) discussed the
relationship between data exchange and mcomplete
information. Nevertheless, a method for mass data
exchange is yet to be proposed. And our goal is to bring
such a method to realise real-time exchange of mass data
between the network layer and perception layer m IOT.
In this study we look into the major factors that affect the
efficiency of data exchange between the network layer
and perception layer in TOT. The factors are as follows:
mass terminal devices sharing the same server’s IP and
port; parsing protocols in different specifications; mutual
exclusion in cache of multi-thread query and forwarding
modules; the storage of destination information which is
used to forward the datagrams to the next application
server. In this study we propose the cormresponding
solutions. First by socket's non-blocking listening, mass
TCP clients are granted access; then we designa
well-extensible datagram parsing module; we use a novel
three-level data storage model to solve the problem of
multi-thread concurrent access to cache; additionally we
put forward the technique of utilizing the mapping
relationship between terminal IDs and the cache space of
query and forwarding threads and reduce the number of
database queries to improve performance. The final
results of the experiments show that owr system is highly
efficient and stable.

PROPOSED METHODS

In this section, based on the objectives of our

system(the single port, high concurency, high

configurability and high performance), we will thoroughly
discuss about the four major factors that have influence
on the efficiency of owr data exchange system and
propose the solutions accordingly.

Single TP and port for the access of mass terminal
devices: Our solution requires a single port for exchanging
data with on-board GPS terminals and other systems. The
on-board GPS terminal may use TCP or UDP. For the
terminals that use UDP we can bind the specific TP and
port with a single socket and start a thread to listen for
incoming data. If the on-board terminals use TCP, the
listening for all the commections demands a huge amount
of threads, which would exceed the system's capacity.

We propose that one thread 1s enough for mass TCP
terminals' access through listening to a socket. Each time
a connection successfully builds up, it is wrapped into a
TCP object (CTepClient) and we
beginReceive() method in c# to listen for the mcoming
TCP datagrams. Since this method 1s non-blocking, when
no datagram is arriving, the TCP connection does not
consume CPU cycles. Until a datagram arrives the TCP
connection object 1s called up to receive data and delivers
data to protocol parsing module. Therefore, we can use
only a single TP and port for connection of mass terminal
devices. Figure 2 demonstrates the sequence diagram of
our proposed method of utilizing socket communication
module to process the data received from an uplink with
on-board terminals and a downlink with application
servers,

can use the

Parsing protocols of various formats: The parsing
module needs to parse out 1Ds of remote terminals in
order to query in the database and obtain forwarding IPs.
But the satellite positioning data from different terminals
present dissimilarity since they employ various protocols.
The manufacturers often customise the protocols under
demand of customers. If we design protocol parsing
modules for all the manufacturers and write classes for all
types of protocols, the system would be built into a mess.
We put forward the concept of generic protocol so that
the system can be self-adaptable and well-extensible. By
extracting a common structure from various kinds of
protocols, all of them are within the generic protocol.

The system calls the appropriate parsing methods
according to the configuration profile in the procedure
llustrated in Fig. 3. The parsing thread gets the datagrams
from the task buffer queue one at a time and extracts the
protocols from the configuration XML, file in order. If a
protocol is valid by default (namely the device 1D is in
certain word length), then we apply the following steps
sequentially: protocol check (matching the protocol's

8082

Inform. Technol. J., 12 (24): 8081-8087, 2013

2:; Socket server: tcp server: tep server: udp server: 2;/?\§

Csocket server CTep server CTep server CUdp server
Onboard T T

termonals or Create
I »

Protoctols parsting
médual

application server
pplicatior !

Create .
Ll

Ve

1

New TCP

Connection | Create !
Loop |

arrives p 1/
— |[UDP dgtagram |

: arrives '—|
|
[}

A
g I
A\ 4

Loop

1

]

I

i

I

1 TCP dafagram
t »
: arrive D
I

I

I

I

I

I

I

Fig. 2: Sequence diagram of the socket communication module

Yes

Is default protocoal?

Yes

Is frame head and
tail matched?

Yes

Get a copy of data
package for parsing) 4

Is specific protocal
mathod?

Get device's id using
specific mathod

| Decoded the device's ID |

L —

| Get device's ID |

T &
-

Fig. 3: Flow chart of parsing the datagram for the device's ID

8083

Inform. Technol. J., 12 (24): 8081-8087, 2013

frame head and tail), data decoding (decoding the data
between the frame head and tail), matching manufacturer
number, decoding the terminal ID and finally retrieving the
ID of the terminal device. Otherwise, it decodes the
terminal TD in a custom method.

Mutual exclusion in cache of multi-thread querying: By
studying similar system frameworks (Boasson, 1995
Perry and Wolf, 1992), we discovered that the system
bottlenecks appear as follows: First, frequent operations
of querying and modifying to the database, Second,
frequent lock operations to the data cache. Because mass
concurrent queries to the database and access to the
same cache will interrupt other threads and waste CPU
cycles, we redesign the cache strategies to increase
performance.

We are aware of the fact that the second problem is
introduced to solve the first one. Therefore we have two
approaches to avoid such dilemma. First, the query and
forwarding module has N instance objects of query and
forwarding units and every instance has its own operating
thread and datagram buffer queue which is prepared for
forwarding. Multiple threads can use the database
operation module at the same time to get the forwarding
IPs of the datagrams and the queries to the database can
use a read-write lock so that one writing thread and
another won't be in mutual exclusion Secondly, each
query and forwarding umt has its own cache hash table
with the terminal Tds as the keys to buffer the
forwarding TPs queried from a local database. Since
multiple buffers exist, we expect less mutual exclusion

in multi-threaded access to the same data-cache of
hash table.

Storage of terminal forwarding destinations: The system
needs to store the terminals' forwarding IPs before
powering off and must reduce the access to the database
because of the mass data. Therefore, we cammot use a
simple cache-database two-level storage structure for
accessing.

Designing the cache read-write strategy has
always been a major difficulty in multi-threaded
programming. Our task is the distribution of mass
data based on the information stored in the database;
therefore we propose a novel three-level data storage
model to cope with the frequent access to the cache. As
demonstrated in Fig. 4 the first level is the database,
where would store the forwarding information when the
system powers off. The second level is the virtual
DataTable cache object m the database operating
module. When this module is initialised, it automatically
generates the DataTable objects corresponding to the
tables in the database. The tlurd level 1s the private
caches controlled by the query and forwarding threads in
the query and forwarding module. Fach thread first
searches in its own cache for the forwarding TP for a
terminal ID or else it quenies in the DataTable and updates
its cache with the absent information. Since the terminal
IDs match the query and forwarding threads as stated in
Section 3.3, when the next datagram from the same
terminal arrives, the thread only needs to search in its own
cache for the forwarding IP and does not need to access
the database operating module. The program also
supports updating the cache with forwarding TPs of
multiple terminal IDs via a provided user mterface.
Therefore, each operation directly updates the DataTable
objects and every 60 sec the database update thread

Querying & forwarding/

database operati ng,

forwading infol
\fordd ok Thr2ad 1 N\,
forwading infoZ _— | |

\eardltiy 8.2 2/

'Fnrwading info3 /

\wlr%

DataTable
cache obJect{_

| database update
\‘\\ thread

Initial
reading

| 7,

Database
/\L g‘
write in

DB per min.

\igrﬁ Tng't reag n/

/
|

Fig. 4: Three-level data storage model

8084

Inform. Technol. J., 12 (24): 8081-8087, 2013

automatically adds new terms to the database according
to the changes in the DataTable so that the database is
up-to-date.

IMPLEMENTATION AND EVALUATION

Implementation: This section details how our data
exchange system was implemented. As shown in Fig. 5,
the system consists of 5 parts including the datagram
class, the socket communication module, the multi-thread
parsing module, the multi-thread query and forwarding
module and the database operating module.

The datagram class(CPackage) is to package the
following data members: the original data bytes received
from socket, the commurnication protocol type (TCP/UDP),
the source IP of the datagram, the sending direction of the
datagram (IN/OUT) according to the source TP and the
terminal ID extracted by the protocol parsing module. The
socket commumication module (PSocketServer) is to
receives datagrams and provides listening service of
non-blocking TCP and simple UDP connections. The
multi-thread protocol parsing module (PParseService) is to
manage multiple parsing threads. It receives datagram
objects from the socket commumication module and
extracts their terminal TD, according to the TD it then sends
the object to one of the threads in the query and
forwarding module. The multi-thread query and forwarding
module (PProcessService) 1s to manage multiple query and

forwarding threads. The database operating module
(PDatabaseService) is to manage a database updating
thread and mamtains a virtual data table object (Datatable)
for caching.
Evaluation: To test and verify ow solution, we
established the system on an ordinary PC to run for a
peried of time. The testing enviromment 1s as follows:

» Hardware: Intel Core 15-2410 2.30GHz CPU, 4GB
RAM, 500GB/5400rpm HDD

» Network: Internet

* Software environment: Microsoft Windows 7
Professional, Microsoft. Net Framework 4.0, MySQL
5.0

» Connected vehicles: 20000 mtotal, among which 5000
are actual running vehicles and 15000 are simulated
ones. Each wehicle is expected to update the
positioning data to server every & sec

» Application servers (simulated): 10 PCs 1s used to
deploy the data receiving program. Each of them
gathers and records statistics of received data. The
data exchange system forwards the data from the
20000 vehicles to the 10 servers sumultaneously

+ System configuration: The data flow in this
experiment is large. The data exchange system
employed 10 protocol parsing threads and 15 query
and forwarding threads in total

Data Exchange System/

CPackage

+ m_ByteDatas :byte||

+ socketIDiunit

+ '}'a‘rzmlmll]_'l:strmg

+ sourcelP:IPEndPoint

+ fle }\\"l‘r\'[".'iF_ﬂl wype

+ protocol Type:EProtocol Type

PParseService

*+ CParseService
= CParseServiceConfig
CParseUnit

Fig. 5: Implementation framework of the data exchange system

8085

il et Cmrran &7 = CProtocallnform -~ .
PSocketServer i : g . Ny PProcessService,
&7 | = CProtocolParseEx [) %

B 0 et & T\ = = 5
ldt:-o\l\etben er i Sy o\ * CProcessService
CSocketServerContig Q:: e MNE | - CProcessServiceConfig

- T [o :
CTepServer 7, "{’“ = CProcessUnit

= CTecpClent ¥ = CProcessTe

-G e ; _Pq;_g__nb&d CProcessTerm
UdpClient e = i."-L.‘dpl.Tlicnr

T L|m||1 allD
o r] W

PData baﬂeb«fn ice

Destirgation[P
<<flows
|

* CDatabaseService
= CDatabaseConfig
= CDatabaseUnit

Inform. Technol. J., 12 (24): 8081-8087, 2013

i-| Data Exchange Sys

System .Logs | Buning | Database |

System running

Yersion 1.z.0.0

Begins 201210410 4:11:23

Lasts 02 (0):00 (H): 19 (M) :54 (3]

CEU Mem (KE)

CEFU nam 4 mem tol 4,194, 303

CFV use 21.85% mem remain 3,399, 164

CEU avg 22, 0a% mem use B5. 852
mem use peak TO.2TH

Threads info

running threads 41

Fig. 6: Situation of the running system

Table 1: Data source

Data sorce Running vehicles Rimulators
Quantities 5000 15000
Data upload interval (sec) 8 8
Total mnning time (h) 48 48
Actual running time (h) About 16 48
Actual message count (Piece) 36000000 324000000

Table 2: Forwarding rate of exchange system

Receiving count 345896120 pieces
Sending count 345896120 pieces
Success rate 10090

For our real-time data exchange system, we mainly
focus on three aspects: the stability of the system, the
success rate of the forwarding system and the success
rate of receiving at the server end.

Stability: After 48 h of continuous running, the system is
in good status. As shown in Fig. 6, the system maintained
an 1deal resource consumption level after long time
runmng.

Success rate of the forwarding system: In Table 1 is the
data source, namely the theoretical data quantity sent by
the on-board devices. But the vehicles don't run all the
time, so the actual data quantity is lower than this.
Table 2 shows the statistics of the data actually received
and forwarded by the exchange system. It can be seen
that the success rate in our exchange system 15 100%.

Success rate of receiving at the server end: There may be
package loss due to the exchange system employing UDP
protocol for forwarding. Therefore in Table 3 we state the
statistics of the success rate at the server end. It can be
seen that the average success rate of receiving among the

Table 3: Success rate at the server end

App. FExpected data Received data Success
SErvers count (pieces) count (Pieces) rate (%)
Server 1 345896120 345896120 100.00
Server 2 345896120 345662720 99.93
Server 3 235098717 235604437 99.96
Server 4 267856900 267722972 99.95
Server § 300123476 300123476 100.00
Server 6 142398756 142270597 99.91
Server 7 200564390 200564390 100.00
Server 8 286954305 286954305 100.00
Server 9 138769001 137797618 99.93
Server 10 325698001 325698001 100.00

ten simulated application servers is 99.97%. This success
rate is usually enough for general applications.

CONCLUSIONS

Based on the example of the traffic monitoring
platform, by designing and implementing a real-time
exchange system of mass satellite positioning data,
this study solves the problem of data load
bottlenecks in the application servers caused by the
mass data transmission between the network layer
and the perception layer in IOT and the problem of
real-time exchange of datagrams between the mass
terminal devices and the various application servers
deployed at different domains. This platform is based on
the systems such as GPS, GIS and GPRS wireless
communication platform and can realise dynamic
monitoring and information managing of all the target
vehicles in the range of the GPRS network. This study
focuses on the real-time exchange system of mass satellite
positioning data, mtroducing the techmical aspects in
designing and realizing the key modules such as the
socket communication module and the multi-thread
parsing and querying module. Additionally, we propose
1n this study a well-extensible datagram protocol parsing
module and a novel three-level data storage model to
solve the problem of multi-thread access to the cache and
the database. Our solution is well supported by owr
experiments.

ACKNOWLEDGMENT

This study was supported by NNSF of China
(Grant No. 61103120); the Fundamental Research Funds
for the Central Universities of South China Umiversity of
Technology (Grant No. 2013ZM0086); Guangzhou Novo
Program of Science and Technology (Grant No.0501-
330);Funds for Key Areas of Guangdong Province and
Hong Kong (Grant Neo. 2011A011305004); Research
Fund for the Doctoral Program of Higher Education
(Grant No.20110172120026).

8086

Inform. Technol. J., 12 (24): 8081-8087, 2013

REFERENCES

Arenas, M., P. Barcelo, R. Fagin and L. Libkin, 2004.
Locally consistent transformations and query
answering in data exchange. Proceedings of the 23rd
ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, June 2004, Paris,
France, pp: 229-240.

Arenas, M. and L. Libkin, 2005. XMI., data exchange:
Consistency and query answering. Proceedings of
the 24th ACM Symposium on Principles of Database
Systemns, June 2005, Baltimore, USA., pp: 13-24.

Ashton, K., 2009. That internet of things' thing. RFID
1,22:97-114.

Boassor, M., 1995. The artistry of software architecture.
IEEE Software, 12: 13-16.

Fagin, R., P.G. Kolaitis, R.J. Miller and .. Popa, 2003. Data
exchange: and query answering.
Proceedings of the 9th International Conference on
Database Theory, January 8-10, 2003, Siena, Italy,
pp: 207-224.

Fagin, R., P.G. Kolaitis, I.. Popa and W.C. Tan, 2004.
Composing schema mappings: Second order
dependencies to the rescue. Proceedings of the 23rd
ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, June 14-16, 2004,
Paris, France, pp: 83-94.

He, B., D. Zheng and Z. Huang, 2005. A secured data
exchange system. Microcomput. Appl., 21: 32-35.

Kolaitis, P.G., I. Panttaja and W.C. Tan, 2006. The
complexity of data exchange. Proceedings of the 25th
ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, Tune 27- 29, 2006,
ACM New York, pp: 30-39.

Semantics

Libkin, T.., 2006. Data exchange and incomplete
information. Proceedings of the 25th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of
Database Systems, June 27-29, 2006, Chicago, IL.,
USA., pp: 60-69.

Miller, R.J., M.A. Hernandez, I.M. Haas, L. Yan,
C.H. Ho, R. Faginand L. Popa, 2001. The clio project:
Managing heterogeneity. SIgMOD Record, 30: 78-83.

Perry, D.E. and A.L. Wolf, 1992, Foundations for the
study of software architecture. ACM SIG-SOFT
Software Eng. Notes, 17: 40-52.

Kolaitis, P.G., 2005. Schema mappings, data exchange and
metadata management. Proceedings of the Z4th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, June 13-16, 2005, Baltimore,
Maryland, USA., pp: 61-75.

Popa, L., Y. Velegrakis, M.A. Hernandez, R.J. Miller
and R. TFagin, 2002. Translating web data.
Proceedings of the 28th International Conference on
Very Large Data Bases, August 20-23, 2002, Hong
Kong, China, pp: 598-609.

Yu, C. and .. Popa, 2004. Constraint-based XML query
rewriting for data mtegration. Proceedings of the
International Conference on Management of Data
and Symposium on Principles Database and Systems,
Tune 13-18, 2004, Paris, France, pp: 371-382.

Zhang, Y.P., C.C. Zhang and HP Wang, 2000. An
Internet based STEP data exchange framework for
virtual enterprises. Comput. Ind., 41: 51-63.

8087

	ITJ.pdf
	Page 1

