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Abstract: Based on the concentrated parameters theory, a 7-freedom coupled vibration dynamic model of the
non-orthogonal face gear transmission system is established, which includes time-varying mesh stiffness, the
tooth backlash clearance and transmission error. In the model, the torsion oscillation of the gear pair, the axial
vibration aroused by tooth meshing force and the lateral oscillations resulting from flexional deformation of the
gear shaft are taken into account. The mesh stiffness fluctuation is developed as 5-order Fourier series and the
tooth backlash clearance is fitted by 7-order polynomial function. Through the Gear method, the dynamic
response of the system 1s obtained and the vibration characteristics are analyzed.

Key words: Non-orthogonal face gear, time-varying mesh stiffness, tooth backlash, nonlinear vibration

INTRODUCTION

Face gear transmission 1s a form of gear transmission,
which is similar to the situation where a cylindrical gear
meshes with a bevel gear (Litvin et al., 1992). Compared
with the bevel gear transmission, face gear transmission
has such outstanding advantages as smaller size, lighter
weight, larger transmission ratio and weaker noise and
vibration (Litvin et al., 1998), thus, extensive and in-depth
studies have been made by foreign and domestic scholars
(Grendal, 1996; Litvin et af., 2000, Zhu and Gao, 1999,
Yang et al., 2010; Lin and Ran, 2012). However, domestic
studies are rather rare (Wang et al, 2009) and mainly
concentrated on orthogonal cases. So, it is both
necessary and meamngful to do research on nonlinear
vibration characteristics of non-orthogonal face gear
transmission system.

In this study, the nonlinear dynamics model
mcluding the tooth backlash, tme-varying mesh stiffness
and error for the non-orthogonal face gear transmission
system is established. Besides, the numerical calculation
and analysis of the nonlinear vibration characteristics of
the system response are obtamned (Yu et al., 2007).

VIBRATION MODEL OF NON-ORTHOGONAL
FACE GEAR TRANSMISSION

Based on the theory of concentrated parameters,
the dynamic model of the non-orthogonal face gear

transmission system is established, which is shown in
Fig. 1, where gear 1 1s the cylindrical gear 1 and 2 1s the
non-orthogonal face gear. O-xy,z, and O-x,y,z, are,
respectively the coordinate system fixed on gear 1 and 2.
The intersecting angle of the center axes of the two gears
<x,0Z, = 8. There are totally seven vibrational degrees of
freedom of the dynamic model of the system. X, Y, and z,
are, respectively the translational degrees of freedom of
the gear ; ¢, is the rotational degrees of freedom of the
gear(1=1,2)

VIBRATION DIFFERENTIAL EQUATIONS
OF THE SYSTEM

Force analysis of the gear teeth: The dynamic normal
load of the gear pair is F,, which can be decomposed mto
three component forces: F,, F,and F, (=1, 2):

F, =k{t)- f(Ayc, A

E,=F, -cosa,

E,=F, -sina, (1)
F,, =F, cosa,

E, =F, -sina, -cos(90°8)

E, =F, -sina_-sin(90°-8)

where, k(t) 1s the normal time-varying mesh stiffness of
the gear teeth; ¢, is the normal damping of the gear teeth
meshing; f{A) 13 the nonlinear function of the meshing
gear pair.
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Fig. 1: Dynamic model of non-orthogonal face gear transmission

Time-varying mesh stiffness: The gear teeth meshing
composite stiffness would periodically vary with the
alternate happening of the single and double meshing
tooth pairs, thus it can be developed into high order
Fourier series:

ki) =k,_ {5; A, -cosl-Q, 40, (2)

1=1

where, k,, 13 the average value of the time-varying mesh
stiffness; Ay 18 the /~order harmonic amplitude; 0, 1s the
/-order initial phase.

Non-linear description of the tooth backlash: The
non-analytic function f(A) is introduced to describe the

actual deformation of the gear teeth with consideration of
the backlash:

A-bA=b
f(A)=<0,-b<A<b
A+b,A<-b

3)

where, symbol b 1s the half of the normal mean
backlash. The image of the function f(A) is shown in
Fig. 2.

Normal relative displacement of the meshing point:
Under the meshing force, the normal relative displacement
of the meshing point A 1s expressed as follows:

b )

v

Fig. 2: Function image of f(A)

A= ArAy-e ) ()
where, A, and A, are, respectively the normal relative
translational and rotational displacement of the meshing
point, e,(t) is the statistic normal transmission error of the
gear pair:

A, =7, -sinoy, Y, scos o, -[Z, - cos(90°-8) - sin o, (5)
+Y, -cosar, + X, -sin(90°-3)-sin o, ]
A-q; = (1, d1..9y). cos &, (6)

where, 1, 13 the distance between the meshing poimnt of the

tooth surface and the center axis of gear; o, is the
pressure angle of the normal plane:
N,
e, (=" A, -cos(l-Q, -1+, (7
1=1
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where, A, is the /~order harmonic amplitude of the error;
€, is the angular frequency of the gear pair; 6, is
the /~order initial phase of the statistic transmission error.
From above all, A can be expressed as follows:

A=(Y-Y,) cosa +[Z-Z, cos(90°-3)] sina,

-X, -8in(90°-8) - sin . +{r, - ¢, 1, - 0,)- cos @ | (8)
N,

A cos(l- €y t40,)

1=1

Vibration differential equations of the system: Based on
all above, vibration differential equations of the system
can be written as follows, which are the 7-freedom,
positive semi-definite, varying-parameter and 2-order
non-linear differential equations:

M Y +¢, Y +ky Y, =-F,

M, -Z +c, -7 +k, -7 =-F,

Lo, =T-F, ¢

M2-YZ+(:y2-Y2-¢—ky2-Y2 =FE, 9
M, -7, +c,-Z,+k, Z,=F,

M, X, +c, - X, +k,, - X, =F,

L, ¢,=-T,+F, -,

where, M, is lumped mass of the gear ;; [, is moment of
mertia of gear ; k; and ¢; (1= 1, 2, j =y, z, x) are separately
brace stiffness and dempmg along the direction of
the x-axis y-axis and Z-axis. T; 15 the torque acting on
gear1(1=1, 2):

T1:Flm'r1+@
oI

e 1

T,

(10)
T,=F,, -1, =F

1m

where, F,, and F,, are separately the constant part and
variation part of the peripheral force which the gear 1
bears, M, is the equivalent mass of the gear pair:

M = L. -1y, (]])

e ] F]
le L +122 o

By the mntroduction of a new variable A, ¢, and ¢,
can be eliminated, so the degrees of freedom of the
system are reduced from seven to six. Then Eq. 9 can be
transformed into dimensionless differential equations:

G (028, $,(0+2p, - &y AT
Ky - (OHp, -k, - g[A(T]= 0
£(D428, - 2,(0)+2p, - G,y - A(T)
1y 2 (D, - Ky - BIMT)] =0
¥, (028 9, (02D, Gy - AT
Ty, Vo (P, K, -BlA(]=0

20028, 2, (0-2p, Py G l(‘c)

g (TP Py Ky B[R] =0

X (28, - Xy (th-2p, Py Cp AT

+i Ky (P, Py K, g[A(D)] =0 (12)
AP, & AT+ p; () g[A D]

+p; - ps - X (0-p; - Hi{0)

Py yZ (‘l:)-p1 '21 (T)+p1 Pa- 22 ]

1,4, +f=0

SOLUTION AND ANALYSIS FOR VIBRATION
DIFFERENTIAL EQUATIONS

The Gear method is one of the most effective
general solutions for complex non-linear differential
equations. The mam advantages of the Gear method are
the automatically changed step-size and orders,
as well as fast calculation speed which contributes
to the solution of large-scale differential equations. By
use of the Gear method, the Eq. 12 can be smoothly
solved to obtain the response of the system. The
calculation 13 conducted under the assumption that the
driving-torque and load-torque are both stable. With the
changes of meshing frequency, the vibration
characteristics of system response also shows a different
variation.

Figwre 3 shows when excitation frequency w, = 1.03,
the system response 18 smgle peried non-harmonic
response, which 1s similar to the characteristics of
linear system, 1ie, single-frequency excitation and
single-frequency response. The time response courses of
the relative normal vibration displacement are simple
harmonic waves. The phase plane plot is a certain closed
curve which 18 neither a circle nor an elliptic curve. The
Poincare map is a single discrete point.

Figuwe 4 shows the 2-period sub-harmonic
response of the system when w, = 1.22, which
reflects a periedic motion whose period 13 2T. The
corresponding phase plane plot 18 some kind of
closed non-circle curve. The Poincare map 1s two discrete
poimnts. The distribution of the spectral lines 13 shown at
the discrete poimnts in the form of m. w/2 m FFT
spectrograrm.

Figure 5 shows the quasi-periodic response of the
system when o, = 1.95. The response is an approximate
periodic motion, which 1s a combination of two or more
pericdic motions, with no mimmal period. The
corresponding phase plane plot 15 many curve circles
which are filled with a certain region. The Poincare map 1s
a rapture ring made up of several discrete points. The
spectral lines in FFT spectrogram are still discretely
distributed at the pomts i the form of frequency
combination.

Figure 6 shows that the system response develops
1nto the chaotic response from the quasi-periodic when
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w, = 2.05. The response is a non-period response motion
with no mimmal period. The corresponding phase plane
plot consists of many intertwining and intercross but
misalignment and not-closed curves. The Poincare map 1s
a set of points which are spread in certain region. The
spectral lines in FFT spectrogram are still discretely
distributed at the pomts m the form of frequency
combination.

CONCLUSION

The comprehensive analysis of the system
dynamic response, mncluding the time response courses,
Poincare map, phase plane plots and FFT frequency
spectrogram, shows that with the changes of the
steady-state
appears, i.e., single-period
double-period  sub-harmonic
response, quasi-periodic response and chaotic response.
These characteristics can have a great impact on the gear

frequency, a varety of

system

excitation
response of
non-harmonic response,

tooth contact stability and operational reliability of the
system. Therefore, when in design, the values of the
relevant parameters should be paid attention to, in case
that the transmission system being in the chaotic
response state.
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