http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 12 (4): 829-834, 2013
ISSN 1812-5638 / DOL 10.3923/1t).2013.829.834
© 2013 Asian Network for Scientific Information

Towards an Interface-based Automation Testing Framework
for Silverlight Applications

Jingfan Tang, Qin Zhu and Ming Jiang
Institute of Software Intelligent Technology, Xiasha Campus,
Hangzhou Dianzi University, Hangzhou, Zhejiang, China

Abstract: Nowadays software applications are increasingly becoming large mn scale and complexity, thus,
Graphical User Interface (GUT) testing plays a formal important role in ensuring the correctness and reliability
of software applications. A variety of approaches in the area of GUI testing have emerged in recent years. One
notable trend is Model-Based Testing (MBT) which creates an abstract test model that simulates the
anticipated behavior of the System Under Testing (SUT) by using some software generated tools to generate
model tests. This study highlights the designing as well as the presentation of a new automation testing
framework for silverlight applications with particular focuses upon the integration of the Spec Explorer based
MBT with a free web framework called WebAii Both of the tools are available as open source. Spec Explorer
can be used to generate the test cases automatically, while WebAii 1s used to simulate human action and
operation processes to complete the test execution in an automated way.

Key words: Automation test, Spec Explorer, model-based testing, WebAu, GUI testing

INTRODUCTION

Software testing is a process of verifying software
before delivering it to market. It focuses on determining if
the developed software meets the specified requirements
as well as detects any differences between the actual
result and expected result. Test automation is now
becoming the fundamental and crucial test method m the
life-cycle of software development, particularly after using
tools with GUI that help programmers quickly create
applications (Dustin et al., 1999).

GUI testing is now also increasingly becoming an
essential aspect or tool to check the quality of software
because it is performed based on the position of end user
for the applications. Various functions of the application
can be reflected through the GUI and therefore GUI tests
can cover the entire application (L1 and Wu, 2004).
Presently, nearly all GUI applications constructed and
assembled by means of tool kits and interface builders.
This type of construction facilitates swift execution of
repetiive tasks, as well as other functions like
prototyping, usability testing (Myers et al., 2000). As a
result of the development process, the
requirements, design and implementation of GUI software
ultimately and inevitably changes thereby mcreasing the
time and resources required for testing. Currently, many
capture/replay tools are used to test GUIs in the market,

iterative

such as WinRurmer, IBM Rational Robot, Astra quick test
and so on. But there is still much problem for applying
these automated testing tools (Singhera et al., 2008;
Grechamk et «l, 2009), especially for Silverlight
applications which allow a user to record and play back UI
interactions as test cases. Microsoft Silverlight is a
cross-browser and cross-platform technology, Silverlight
application has rich graphics and wuser mteraction
(Villa et al., 2007). Any minor changes in the GUI of
Silverlight application will influence the corresponding
test cases. The changes of user interface elements
(Ul-elements) may occur frequently to make the software
applications more comfortable which may need to
re-implement all test cases defined by means of
capture/replay so that it makes maintenance of test cases
very time-consuming and expensive.

Having considered all the arguments stated, this
study presents a novel framework for executing
automation testing on Silverlight applications. This
framework focuses on integration of Model-Based
Testing (MBT) (Swan ef al., 2010; Mlynarski et af., 2009)
and Spec Explorer (Campbell et al., 2005) to automate the
software testing on GUI of Silverlight applications.
Generally in MBT, the System Under Test (SUT) i1s
represented by a model describing its expected behavior
at a higher abstraction level, and a set of chosen
algorithms are used to generate test cases from this model

Corresponding Author: Jingfan Tang, Institute of Software Intelligent Technology, Xiasha Campus, Hangzhou Dianzi University,
Hangzhou, Zhejiang, China Tel: +86-131-8422-0530 Fax: +86-571-8691-9178

Inform. Techrol. ., 12 (4): 829-834, 2013

(Kanstren, 2010). A number of research results have
shown model-based testing as a promising solution to
overcome the maintenance weakness of capture and
replay tools (Utting and Legeard, 2007). The Spec Explorer
can be used to generate the test cases automatically from
requirements of the system’s models rather than writing
test cases manually. A free Web test framework called
WebAi 1s used to simulate human action and operation
processes to complete the test execution in an automated
way.

The main advantages of this framework are as
follows: (1) Automatically generate and validate test cases
by executing the system under test and keep a high test
coverage, (2) Having effective functional and regression
testing as well as keeping them in a highly maintainable
state with low effort for test process, the change of a user
interface element doesn’t need to redefine the whole test
case and (3) A clear separation of abstract test case
description through the usage of models from the
execution of the user operation will make the tests more
maintainable. The main goal of this study is to reduce the
work load required to create and maintain test models and
increase the efficiency of automated testing of Silverlight
applications.

INTERFACE-BASED AUTOMATION TEST
FRAMEWORK

Based on the special requirements of Silverlight
applications, the automation test framework is composed
of four components: GUI modelling, test cases generation
and execution, Adapter and Spy layer. The framework
architecture is shown in Fig. 1.

GUI modelling with Spec# and Spec explorer: Modelling
represents an abstraction of a system from the test
system's perspective. An effective model describes the
possible user-interactions with the graphical user
mterface, which helps users to analyze, describe, explore
and build the system. The modelling with Spec Explorer 1s
stimulated by Abstract State Machines (ASMs)
(Grieskamp et al., 2002) which provides a way to model
system behavior of abstraction at any level. FSM (Fimte
State Machine) (Swain et al., 2010; Ye et al., 2007) 1s
another important model testing used in object-oriented
software. Figure 2 illustrates the structwre of the GUI
modelling which used by Spec Explorer.

A formal model program can be writter in a high level
specification language such as Asml (Guevich et al.,
2005), Spec# (Barnett et al., 2004), or in a programming
language such as C# or Visual Basic. A model program
class will be defined m the model with the specific

830

: N GuI
Requirement modelling
Spec explorer
h 4
Test case

generation
Test case N
exeoution »| Adapter » Spy

Test
resulis

Fig. 1: Testing framework for silverlight applications

GUI
modelling
h 3 I k 4
Model class Cord script
¥ ¥ . ¥
Mode! Configurations Machines
y
| Rules | | Action | | Switches | | Behaviar
Adapter |«

Fig. 2: The structure of the GUI modelling

methods to simulate user basic activities in the System
Under Test (SUT) and these defined methods often
correspond to SUT implementation. Model methods are
annotated as rules that represent the possible state
changes of GUI (Yuejin and Tianyu, 2009). To enable
conformance testing of the outputs displayed to users,
rules are also used to observe the state of the actions.
These actions can have pre-conditions, written as
“condition” clauses () that define the states, and can be
seen as the symbol for updating of ASM rules.

In order to enable the model program to generate the
effective test cases, a Cord script will be defined with the
configurations and action machines to express the
behaviors. It contains at least one configuration that
declares the actions of the Model and defines the
interface between Model and Adapter. For example, the
action of all Silverlight Automation. Adapter 1s written for
calling methods in Adapter layer. The Cord script can also
have some exploration switches.

Test cases generation and execution: One of the biggest
advantages of this framework 13 to use Spec Explorer

Inform. Techrol. ., 12 (4): 829-834, 2013

automatically to generate test suites from a Spec# or
Asml specification, which will reduce plenty of time and
costs. As soon as the Model program has finished the
constructed process, Spec Explorer will begin to explore
the machine and generates a project file with the test
suites. A test suite is a set of test cases derived from one
action machine created by translating the exploration
results mto test cases according to the selected algorithm.
And this action machine will drive the generation of the
corresponding test suite in twn which describes the
detail executed steps of the SUT. For example, the step of
SilverlightAutomation. OneAccount. Adapter. Initialize() in
a test case will call the method in Adapter.

After test cases have been constructed, Spec explorer
will begin to execute them. The Spec Explorer supports
both a umnit test format and a customizable format, hence,
every test case is represented by an executable unit test.
When the button “Run all tests in solution” in Visual
Studio 15 clicked, all test cases will be executed
automatically.

Adapter layer: A separated Adapter layer needs to be
mnplemented to support the effective commumcation
between Spec Explorer and WebAii framework which likes
an adapter in Design Pattern. The Adapter layer is a
modification of the Spec Explorer adaptation which is
made for Silverlight applications. It creates methods that
make product abstract behaviors to the actual
implementation steps and responses with spy layer
execution results. Figure 3 illustrates the structure of the
Adapter layer and the connections to the WebAii

An interface method 1s associated with one Ul
operation and the rule can be treated as the behavior
constraint for corresponding interface method. The
methods of Adapter layer should keep consistent with
those in GUI modelling layer. “Using all adapter™ in cord
file will link up with the Model and Adapter. Test cases
method generated by model will contain Adapter
methods, so that it will not call the methoed of adapter if
the method of adapter and model are not consistent.

Spy layer: The Spy is the lowest layer of the four layers
that interacts directly with Silverlight applications. It
expresses the actual operations such as clicking a buttor,
input data in a textbox and so on. As mentioned in the
overview of the framework, the WebAil framework is
unplemented to provide relevant APIs to support the
operation of LINQ on the browser to control the
Silverlight, which controlls the mouse movement and
keyboard to replace user’s repetitive task and regression
testing, bring more reliable results and fewer mistakes.
WebAi 1sa free Web testing framework developed by

831

Visnal studio
> Pass

Dom explorer
(WebAii)

1_1

Find URL

Assertion and
verificaton

L

— Fail

Action
{mousetkeyboard)

Find UI-

_’e]ments

Fig. 3: An overview process of Spy layer

Telerik (Paz, 2010) which can also be integrated with a unit
test framework into Visual Studio with two types of test
automated oracle (Ye et al, 2007) verfication and
assertion.

WebAii framework is based on Telerik testing
framework that provides all the base functionalities used
by WebAui. The main functionality of them 1s that 1t owns
the abstraction functionality of Browser/Dom, which can
support all of the mainstream of the browser, such as TE,
firefox and se on. Figure 3 shows an overview process of
Spy layer.

In Spy layer, browser first navigates to the
corresponding TJRT,, then enter the page of applications.
Spy inside has all kinds of controls interation between
Silverlight and Telerik, such as click, double click, input
text, drag, etc. The precondition of its interaction is that
the locations of the controls in SilverlightApp can be
found 1n some way. WebAi provides powerful element
finding strategies to find these controls, such as directly
find through the name, assigning the control
Automationld and so on. In the following, WebAi wall
operate on the DOM (Document Object Model) tree file
structure to simulate people’s mouse operation. When the
controls have been found, WebAi interacts with controls
through the User Attribute e.g., it uses the method of
Control User.Click() to present “click™ After fimshing
these operations, the verification will occur during the
execution of test cases. If one of the commands fails, the
execution continues till the completion of the test cases.
And, the test results will show the failed test cases. In the
other hand, Assertion mode occurs during the execution
of commands, many function of Assertions are defined in
Spy methods. if one of commands fails, the execution
ends at once and the test results are displayed.

In order to reduce the code changes, it should
consider the conditions as many as possible in the
interface design of model layer and the designing of the
method parameters to address the good extensibility. The
spy layer code need to follow the specific criteria through

£ 5| @ gn@qin-pe 2012-07-04 220 -

“ Run > 19 Debug + 1 |y o -
\¥) Test run completed Results: 1/1 passed; Item(s) checked: 0

Result Test Name Project Error Messaée
(4@ Passed DataPrecision Onehccount

Inform. Techrol. ., 12 (4): 829-834, 2013

REFERENCES

Bamett, M., R. Lemno and W. Schulte, 2004. The Spec
programming system: An overview. Proceedings of
the International Workshop on Construction and
Analysis of Safe, Secure and Interoperable Smart
Devices, Volume 3362, March 10-14, 2004, Springer,
Marseille, France, pp: 49-69.

Campbell, C., W. Grieskamp, .. Nachmanson, W. Schulte,
N. Tillmann and M. Veanes, 2005. Model-based
testing of object-oriented reactive systems with Spec
Explorer. Techmcal Report MSR-TR-2005-59,
Microsoft Research, May 2005.

Dustin, E., J. Rashka and J. Paul, 1999. Automated
Software Testing: Introduction, management and
performance. Addison-Wesley, New York, USA.,
ISBN: 9780201432879, Pages: 575,

Grechamk, M., Q. Xie and C. Fu, 2009. Maintaining and
Evolving GUI-Directed Test Scripts, Proceedings of
the IEEE 31st International Conference on Software
Engineering, May 16-24, 2009, Vancouver, BC.,
Canada, pp: 408-418.

Grieskamp, W., Y. Gurevich, W. Schulte and M. Veanes,
2002. Generating finite state machines from abstract
state machines. Proceedings of the 2002 ACM
SIGSOFT International Symposium on Software
Testing and Analysis, July 22-24, 2002, Rome, [taly,
pp: 112-122.

Gurevich, Y., B. Rossman and W. Schulte, 2005. Semantic
essence of AsmL. Theor. Comput. Sci., 343: 370-412.

Kanstren, T., 2010. A Framework for Observation-Based
Modelling in Model-Based Testing. VI'T Techrucal
Research Centre of Finland, Espoo, Finland,
ISBN: 9789513873769, Pages: 727,

Li, K. and M. Wu, 2004. Effective GUI Test Automation:
Developing an Automated GUI Testing Tool.
John Wiley and Sons, New York, USA,
ISBN: 9780782143515, Pages: 445,

Mlynarski, M., B. Guldali, M. Spath and G. Engels, 2009.
From design models to test models by means of test
ideas. Proceedings of the 6th International
Workshop on Model-Driven Engmneering,
Verification and Validation, October 4-9, 2009,
Denver, CO., USA.

Myers, B., S.E. Hudson and R. Pausch, 2000. Past, present
and futiwe of user interface software tools. ACM
Trans. Comput. Human Interact., 7: 3-28.

Paz, TR.G., 2010. Pro Telerik ASP. Net and Silverlight
Controls: Master Telerik Controls for Advanced
ASP Net and Silverlight Projects. Apress, Berkeley,
CA., USA, ISBN: 9781430229407, Pages: 696.

Singhera, 7., E. Horowitz and A. Shah, 2008. A Graphical
User Interface (GUI) testing methodology. Int. 7.
Inform. Technol. Web Eng., 3: 1-17.

Swain, 3.K., S.K. Pam and D.P. Mohapatra, 2010. Model
based object-oriented software testing. J. Theor.
Applied Inform. Technol., 14: 30-36.

Utting, M. and B. Legeard, 2007. Practical Model-Based
Testing: A Tools Approach. Morgan Kaufimann
Publishers Inc., San Francisco, CA., USA.,
ISBN: 9780123725011, Pages: 433,

Villa, A, I. Cassarmo and D. Antonelli, 2007. Extending
group technology to the identification and the
analysis of enterprises networks. Int. I. Prod. Res.,
45: 3881-3892.

Ye, M., B. Feng and L. Zhu, 2007. Automated oracle based
on multi-weighted neural networks for GUT testing.
Inform. Technol. T., 6: 370-375.

Yuejin, L. and X. Janyu, 2009. Conditioning for state
space reduction i program model checking. Inform.
Technol. T., 8: 990-997.

834

	ITJ.pdf
	Page 1

