http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 12 (24): 8435-8445, 2013
ISSN 1812-5638 / DOL: 10.3923/1t).2013.8435.8445
© 2013 Asian Network for Scientific Information

A Distributed Algorithm for SI Transactions Serializability im Cloud Computing

“*Huang Bin, *Peng Yuxing and *Peng Xiaoning
'School of Computer Science, Wuhan University, Wuhan, 430072, China
"Department of Computer, Huaihua University, Huaihua, 418008, China
*National Labaratory of Parallel and Distributed Processing,
National University of Defense Technology, Changsha, 410073,China

Abstract: There are well known anomalies permitted by snapshot isolation that can lead to violations of data
consistency by interleaving transactions that individually maintain consistency. Until now, there are some ways
to prevent these anomalies only in single computer and there are not the corresponding solving methods in
cloud computing. This paper describes our PDCC algorithm to detect cyeles in a snapshot isolation
dependency graph and abort transactions to break the cycle in cloud computing. The algorithm ensures
serializable executions for SI transactions in cloud computing. Based on the transaction concwrrency control
of Percolator, we have implemented our algorithm in an open source cloud database system (HBase) and our
performance study shows that PDCC throughput and scalability are good.

Key words: Cloud computing, transaction; SI, dependency graph

INTRODUCTION

According to CAP theories (Brewer, 2000; Gilbert and
Lynch, 2002), data sharing system can only satisfy two of
the three features, namely consistency, availability and
tolerance to partitions. Cloud computing system 1s a
distributed system, so either consistency or availability
can be met in cloud computing system. Some of current
cloud computing systems, in order to meet the availability,
reduce the requirements for consistency (Vogels, 2009)
and do not support cross-line and cross-table
(Levandoski et al., 2011, Helland, 2007) operations, such
as Google’s BigTable (Chang et al., 2006), Amazon’s
SimpleDB, Facebook’s Cassandra, Windows’ Azure,
Dynamo (DeCandia et «l, 2007) and PNUTS
(Cooper et al., 2008), etc. and their application covers
webpage search, user setting and recommendation on
social network (Levandoski et al., 2011; Wei et al., 2009).
While other cloud computing systems strive for
consistency at the costs of availability, such as CloudTPS
(Wei et al., 2009), Percolator (Peng and Dabek, 2010),
ElasTras (Das et al., 2009, 2010a), G-Store (Das et al.,
2010b), Deuteronomy (Levandoski et al., 2011), ecStore
(Vo etal, 2010), HBASEST (Zhang and De Sterck, 2010;
2011), etc. and their application covers online auctions,
CO editor, credit card withdrawals, air ticket booking
(Levandoski et al., 2011), etc.

For the systems preferring consistency, the SI
(Snapshot Isolation (Berenson et al, 1995) method 1s

umportant to guarantee both consistency and
high-efficient handling of transactions. With SI method,
the data are read according to Read Lastest Version (RLV)
rules, namely, when data are read, the transaction can
only read the latest version of data submitted before its
start and 1t can't read the data updated by other
transactions after its start. Transaction submission
follows First-commit-wins (FCW) rules, that is, if two
transactions update the same data, the transaction
submitted earlier will be successfully allowed while that
submitted later will be abandoned. SI has the following
two major characteristics. (1) It avoids SQL defined in
ANSI (ANSI, 1992; Revilak et al., 2011), because the RLV
rules of SI can ensure that all the data read by
transactions have already been committed, eliminating
reading “dirty” data and non-repeatable reading;
moreover, FCW rules ensure that the data to be modified
by each successfully-submitted transaction, during its
operation period, will not be modified by other
transactions, avoiding “lost update” (2) With SI
mechanism, the “read” operation will be never delayed by
other concurrent transaction “write” operations and it will
never delay the read and write operations of other
transactions, thus it enjoys higher throughput rate and it
1s especially preferred to read data intensive environment
(Revilak et al., 2011, Cahill et al., 2008).

The characteristics of ST endow it with good
consistency and high transaction processing efficiency,
thus SI 1s generally applied to concurrency control of all

Corresponding Author: Huang Bin, School of Computer Science, Wuhan University, Wuhan, 430072, China
8435

Inform. Technol. J., 12 (24): 8435-8445, 2013

kinds of transactions. However, SI method embraces
transaction Serializability anomaly (Revilak et al., 2011;
Cahill et ai., 2008, 2009; Fekete et al., 2004, 2005, 2009,
Jorwekar et al., 2007), 1e., good consistency can be
separately
executed while inconsistency may arise when they are
simultaneously executed.

ensured when multiple transactions are

Many solutions have been put forward to solve SI
transaction serializability anomaly, such as static
analysis method (Fekete, 2005; Jorwekar et al., 2007),
dangerous-structure determination method (Cahill et al.,
2008, 2009) and centralized loop detection method
(Revilak et al., 2011). With static analysis method, Static
Dependency Graph (SDG) 1s constructed when the
possible dependent relationship between static analysis
applications 13 designed and, if dangerous structure is
shown i the graph (1.e., There are dependencies among
three transactions, T1, Tj and Tk:), the application code of
dangerous structire must be modified and ww
dependency will be introduced between these
applications, in order to solve the SI transaction
serializability anomaly but this method can not be applied
in random transaction environment. Dangerous-structire
determination method can be used to determine
dangerous structure between transactions in operation
period and, if any dangerous structure
corresponding transaction will be abandoned. This

arises,

method can solve the transaction serializability anomaly
and 1t 1s suitable in random transaction environment but
1t can abandon many transactions that should not be
abandoned. With centralized loop detection method,
central server is utilized to record all the Transaction
Dependency Graphs (TDG) and all data lock tables
through which the dependencies between transactions
can be determined and the dependence graphs can be
changed in timely manner according to the dependencies;
in addition, this method can help to find the loops in
graphs when transactions are submitted, if there 1s indeed
loop, comresponding transaction will be abandoned to
eliminate the loop. This method matches well with random
transaction environment and it can accurately abandon
transactions which effectively solves SI transaction
serializability anomaly, thus it has been widely recognized.

The good consistency and Thigh-efficiency
transaction processing of SI enable ST to be widely used
in cloud computing environment (Peng and Dabek,
2010; Zhang and De Sterck, 2010, 2011). However, SI
transaction serializability anomaly arising in c¢loud
computing environment impacts the data consistency in
transaction implementation process. The above three
methods can solve SI transaction serializability anomaly

but they are proposed specially for stand-alone
enviromment and there has been no distributed algorithm
corresponding to cloud computing environment.

In order to better solve SI transaction serializability
computing enviromment,
transaction-dependent loop distributed detection method
1s proposed, this method mtegrates many technologies
related with transaction-dependency distributed
discovery, construction of distributed TDG and
distributed detection algorithm of transaction dependency
loop, thus it overcomes the difficulty in construction of

TDG and transaction-dependency loop detection in cloud

anomaly in cloud

computing enviromment, so as to realize SI transaction
serializable execution in cloud computing.

DESIGN IDEAS

Transaction dependency refers to the relationship of
transaction operation conflicts. If two transactions,
namely T, and T,, operate on the same data item x, at least
one transaction will write data item x which means T, and
T, depend on each other. Under SI mechanism,
transaction dependency is divided into the following
three varieties:

Ty, ‘iTTn : When T,, writes data itemn x (for x,,version) and
then T, reads x,, no new versions of data X
arise during the period from T, generates x,, to
T, reads x_,

When T, writes data item x (for x version) and

then T, writes data item x (for successor

Ty W;an :
version of x,), there is no other version
between x, and x,

TytwT,: T, reads x, and then T, writes data item x, X8
successor version x, s produced

Tt is the dependency between SI transactions that
causes Sl transaction serializability anomaly m SI
mechanism (Revilak et @l 2011; Cahill et al., 2008, 2009,
Fekete et al., 2004, 2005, 2009, Jorwekar et al., 2007) with
SI writing skew as an example:

Suppose X and Y are two accounts in a bank, with
premise of X+Y>0 and mmtially X; = 50 and Y, = 80.
With SI mechamsm, transaction T, reads X, and Y, since
XY, =130, X, minus 100 leads to new version value
¥, = -50 and it still complies with the constraint X+Y=>0;
Similarly, concurrent transaction T, reads X, and Y, and
Y minus 120 produces a new version value Y, = -40, then
it also complies with the constraint X+Y>0. Adya
model (Adya, 1999, Adya et al., 2000) (R;, W; and C,means

the operations of respective write and submit of

8436

Inform. Technol. J., 12 (24): 8435-8445, 2013

rw(z)

Fig. 1: TDG (L)

transaction 1, with the subscript 1 meamng transaction No.,
d, represents data item d of version 1 which means
corresponding transaction No.) 18 adopted to describe the
concurrent operation history as follows:

Hi: (X500, 500, (Y, 80)r,(Y, 80 1w (X,,-50)c, wy(Y .-
40)c,

The final result of operation sequence H, X+Y=-90
violates the constraint X+Y>0.

TDG 1s an effective tool to determine the transaction
serialization and it takes one transaction from transaction
operation history as vertex and the dependencies between
transactions as sides to form a directed graph. If there 1s
loop in TDG over transaction operation history, then the
operation history cannot be serializable. For example,
Fig. 1 i TDG of operation history Hi:
Yo r, (3w (Y O (Zg)ew (4 (C0n(Y Jew(Zs)es. InH,
transaction T, reads Y, then transaction T, 1s submitted,
data version Y, is produced, so, T, and T, embrace
dependency relationship: T, wT,. In Fig. 1, there is a
directed side (rw) from T;to i; when transaction T, is
submitted, data wversion Y, 18 produced and then
transaction T, reads Y, so T, and T, embrace dependency
relationship: T, wr'T; and there 1s a directed side (wr) from
T, to T, m Fig. 1. Similarly, there are two directed sides
(rw) from T, to T,and one side (rw) from T,to T,. There
are three loops: T, wrT, and |T,|T;|T;| in Fig. 1. showing
that the operation history cannot be serializable.

Since only the existence of directed loop shall be
determined, so TDG can be simplified, then the sides
toward the same direction can be removed and the sides
enjoy no affiliated dependency relationship. Figure 2 is
the simplified diagram of Fig. 1.

In centralized environment, the directed loops can be
determined as follows. At first, TDG 18 empty. When a

Fig. 2: Simplified TDG (H,)

Ty T2 Ts Ts

Servery Serverz Servers

Fig. 3. Distribution of transactions and their dependency

transaction needs submitting, the management system
adds this transaction and it’s depending sides into the
TDG@G, then the existence of loops is detected; if there 1s
any loop, this transaction and its depending sides will be
abandoned.

In cloud computing environment, transactions and
their dependency show the following characteristics:

» Data access operations of each transaction are
distributed to multiple nodes. For example, in Fig. 3,
operations of transaction T, are distributed in Server
1 and Server 2; those of transaction T, are distributed
in Server 2 and Server 3

¢ Ineach node, only some transactions access the data
in this node. For example, in Fig. 2, three transactions
(T,. T, and T,) access the data in Server 1

» The dependency between two transactions exists in
multiple nodes. For example, in Fig. 2, T, and T,
operate in both Serverl and Server2, so the two
transactions may show dependence m both Server 1
and Server 2

8437

Inform. Technol. J., 12 (24): 8435-8445, 2013

¢+ No overall TDG exists in any node and each node
only operates the dependency of some transactions
allocated on 1it, without knowing the dependency of
transactions in other nodes. For example, in Fig. 2,
Sever 3 can only know the dependency of T,, T, and
T, in Sever 3 but does not know the dependency of
transactions existing in Sever 1 and Sever 2

In view of the above characteristics, distributed
detection method of transaction-dependency loop is
proposed, including the followmng steps. (1) Distributed
transaction dependency table 1s designed to store the
transactions and their dependency in nodes;, (2)
Transaction dependencies are transferred between nodes
to build more extensive dependencies; (3) Loop-oriented
judgment 18 conducted and the judgment results are in
transmitted between nodes.

DESCRIPTION OF TRANSACTION DEPENDENCY
AND CONSTRUCTION OF DISTRIBUTED
ALGORITHM

A transaction dependency table 1s presented in this
paper to record dependencies between transactions
(Fig. 4): Header contains the record of transactions set
and each transaction T, is in charge of an Inner

Header
ITS:
T1
— 0TS,
ITS:
T2
— 0TS
=]
38
S
ITS,
Tn
oTS,

Fig. 4: Transaction dependency table

Transaction Set (ITS,) and an Outer Transaction Set
(OTS) which describes the dependency between
transactions;, ITS, consists of transactions i T, while
OTS, 1s composed of transactions fanned out from Ti.

For example, Transaction dependencies shown in
Fig. 5 are simplified as those shown in Fig. 6.

In distributed environment, transaction dependency
tables are distributed to all nodes for description and

storage. For example, Fig. 7 shows one type of
Fig. 5: TDG
ITS; = {T4}
T
L oTS={T2 T3}
—— TS ={T4}
T2
L oTS:={T3, ™4}
— TS ={T1, T2}
3
L OoTS={T1, T2}
— TS ={T2, T3}
T4
OoTS;={T1}

Fig. 6: Transaction dependency table corresponding to
Fig. 5

8438

Inform. Technol. J., 12 (24): 8435-8445, 2013

— |T5l = {T4} —_— |TSz = {Tl} |T53 = {Tl, Tz}
T1 T2 1 T2 _[
L. 0TS = {Tz, TS} — 0TS = {-|—3Y TA} 0TS = { T4}
— ITS ={T2, T3}
T4
— OTS;={T3}
Serverl Server2 Server3
Fig. 7. Distribution of transaction dependency tables in nodes of Fig. 6
e e \
@ | T L™
= - T \\ T
s E .
. .
P e = P
T4} isz P Ta 2 [Tah [}
e L A o
N - “ s
. v ~
- L" - : e
{113, [T3 @
L e

Fig. 8: Partial dependence graphs corresponding to Fig. 7 Transaction dependency table

distribution of Fig. 6. After the transaction dependency
tables are distributed to all nodes, each node only
holds some of the transactions and their
dependencies, as is shown in partial dependency
graph. For example, the partial dependency graph of
transaction dependency table on each node in Fig. 7 is
shown in Fig. 8.

In order to locate transactions mnto nodes, hash
adopted to match transactions on

corresponding nodes, 1e., the node number = hash
(transaction identifier).

method 1s

TRANSACTION DEPENDENCY LOOP
DISTRIBUTED DETECTION ALGORITHM

Principles of loop detection: The basic principles to
detect transaction dependency loops are as follows. The
transaction mitiating loop detection send detection
messages (whose content 13 the identifiers of
corresponding transactions) to all its fanned out
transactions; those transactions receiving the detection
message, 1f fanming out some other transactions, will send

all the detection messages to ther fanned out

transactions, or, if not fanning out some other
transactions, will retwn to the original famming in
transactions, the transactions that have received returned
messages will determine whether all the fanned-out
transactions sent back messages, if they do, the returned
messages will be sent back to corresponding farming-in
transactions.

So, according to the transferring of messages:

» If the transaction launching loop detection sends
detection messages and receives the same messages,
it means this transaction locates in the loop. For
example, in Fig. 9, the transaction T, initiates loop
detection and then, from fanning-mn transaction TS5,
recelves loop detection message it sends, so T, 1s
located in the loop

¢ If the transaction launching loop detection sends
detection messages and then receives messages
returned by all fanned-out transactions, it means this
transaction is not located in the loop. For example, in
Fig. 10, T9 initiates loop detection and receives the
messages returned from T4 and T10, so T9 1s not
located 1n the loop

8439

Inform. Technol. J., 12 (24): 8435-8445, 2013

Legend
r----------'l

|
: O Transaction |

Initiating
detection

|
:-» Dependencesside|
| Path for returned!
| > message :
[
Detected |
:. messages [
[
[Returned
:I:(messages :
| }

Fig. 9: Transaction launching loop detection messages locates m loop

[nitiating
detection

|O Transaction |

I
:—> Dependence sidg
I
|

Path for returned:
| message
Detected
(& '
| messages |
: I:(Returned :
| messages I
I |
e e |
Fig. 10: Imtiated transactions are not located in the loop
* For the transaction not imtiating detection, In case 1, the mitiative transaction shall be
if it receives the same detection messages abandoned to break the loop composed by this
for twice from the same fammed-in transactiorn, transaction; I case 2, imitiative transaction can be

it means that this transaction is located in submitted; in case 3, the first transaction existing in loop
the loop. For example, m Fig. 11, after T2 andnot yet been committed shall be abandoned, break the
initiates detection, T6 receives T2’s detection loop composed by this transaction and eventually it can
messages for twice from T3, so T6 1s located in the be determined that the imitiative transaction 1s not located
loop in the loop.

8440

Inform. Technol. J., 12 (24): 8435-8445, 2013

Initiating
detection

Fig. 11:Non-imtiative transaction 1s not located in the loop

Distributed algorithm: According to the above

principles, transaction dependency loop detection
algorithm consists of initialization algorithm,
message-reception algorithm, forward-processing

algorithm and backward processing algorithm.

Tnitialization algorithm: When the node N receives T,"s
detection request, it imitiates loop detection operation,
according to the algorithm below:

Algorithm 1: Initialization algorithm

1. This node is marked as the source node;

2. For Ty’s all fanned-out transactions T

3. Host node H of T is calculated;

4 The messages are sealed according to the following format: <type =
“forward”, initiating transaction ="T.", sending transaction = “T '}
and target transaction = “T"";

5 The messages are sent to H;

Message-reception algorithm: Each node will receive two
kinds of messages: the messages for loop detection and
returned messages due to no existence of loop. Correct
algorithm corresponding to the message type is used to
process the messages
algorithm.

according to the following

Algorithm 2: Message-reception algorithm

If (the message belongs to “forward” type);
Forward-processing algorithm is utilized;
else

Backward processing algorithm

Bl e

O Transaction

—» Dependenceside |

Path for returned :
message

D Detected

messages

E(Returned

messages

Forward-processing algorithm: Fach node, after
receiving loop detection message, gets relay transaction
from “target transaction” field of the messages and then
gets all the fammed-out transactions of the relay
transaction from transaction dependency table of thus
node and forwards the messages to them. The specific
algorithm 13 as follows:

Algorithm 3: Forward-processing algorithm

1. Tf(target transaction =T)

“Loop with transaction existence” is output

Else

It (target transaction has forwarded T0’s messages and not yet

subrnitted thern)

5 Target transaction is abandoned

6. Sent-out Ts is extracted fiom the messages

7. Host node (H) of Ts is calculated

3 The messages are sealed according to the following format: <type =
backward, initiating transaction = T0, target transaction =Ts>

8. The messages are sent to H

9. Else

10. T,is obtained from “target transaction” field of the messages

11. All the fanned-out transactions are obtained from Td’s OTS

12. If(Td contains fanned-out transactions)

13. The fact that Td sends initiative transaction T0’s message is recorded

14. For T4’s all fanned-out transactions T

15, Host node (H) of T is calculated

16. The messages are sealed according to the following format: < type =
forward, initiating transaction = TO..., sending transaction = T4,
target transaction =T>

17. The messages are sent to F

18. Else

19. Sending transaction Ts is extracted fiom the messages

20. Host node (H) of Ts is calculated

21. The messages are sealed according to the following format: <type =
“backward”, initiating transaction = T0, target transaction =Ts>

22. The messages are sent to H

W

8441

Inform. Technol. J., 12 (24): 8435-8445, 2013

Backward-processing algorithm: Each node, after
receiving “returned message”, gets relay transaction from
“target transaction” field of the messages and then it 1s
determined whether those fanmed-out sides of relay
transactions that have sent T(0’s messages receive
retrned messages and if they do, the node will forward
the returned messages to its fanned-in transactions. The
specific algorithm 1s as follows:

Algorithm 4: Backward-processing algorithm

1. Tais extracted from target transaction of the messages

2. If{fanned-out sides of relay transactions that have sent TO%s messages
receive returned messages)

3. H(Td=TO)

4 “Loop with transaction existence” is output

5. Else

6. All the fanned-in transactions T are obtained from the Td’s ITS

7

8

9

For Td’s all fanned-in transactions Ts
Host node (H) of Ts is calculated
The messages are sealed according to the following format: <type =
backward, initiating transaction = T0, target transaction =T's>
10. The messages are sent to H

EXPERIMENTS AND PERFORMANCE
EVALUATION

In order to evaluate transaction-dependency loop
distributed detection method (hereinafter referred to as
PDCC), a Sl-oriented serializability distributed algorithm
integrating Percolator’s method of transaction processing
(denoted as Percolator) is defined, achieving cross-line
cross-table transaction processing i HBase. Percolator,
a system Google uses to handle incremental webpage
index, realizes distributed transaction by two-phase
submission and optimistic locking. Moreover, Percolator’s
transaction processing method is modified, so as to realize
transaction-dependency loop distributed detection.

To evaluate the e_ects of making SI senalizable, we
need a benchmark that is not already serializable under SI.
The SmallBank benchmark (Alomari et al., 2008) was
designed to model a sumple banking application
involving checking and savings accounts, with
transaction types for Balance (Bal), Depositchecking
(DC), Withdraw-from-checking (WC), Transfer-to-savings
(TS) and Amalgamate (Amg) operations. Each of the
transaction types involves a small number of simple read
and update operations. The static dependency graph for
SmallBank 15 given in Fig. 12, where the double arrows
represent write-write conicts and the dashed arrows
represent read-write conicts. Tt can be seen by inspection
that there is a loop: Bal-WC-TS-Bal.

Experimental environment: Our testing mfrastructure had
126 machines on 4 racks connected by Gigabit Ethernet
switches. Intra-rack bisection bandwidth was "14 Gbps

Fig. 12: DSG of SmallBank Benchmark

while inter-rack bisection bandwidth was "6.5 Gbps. Each
machine had two 2.4 GHz Intel Xeon CPUs, 4 GB of main
memory and two 7200RPM SCSI disks with 200 GB each.
Machines ran Red Hat Enterprise Limx AS 4 with kernel
version 2.6.9.

We adapted the original relational data model defined
by SmallBarnk to the Bigtable data model, so that, the
application data can be stored into HBase. The relational
data model of SmallBank comprises three tables that are
accessed by these transactions. To adapt this data model
to Bigtable, we combine the three tables: Account (Name,
CustomerID), Saving (CustomerTD, Balance) and Checking
{CustomerID, Balance) into one Bigtable named “Bank”™.
Each of the original tables is stored as a column family,
whose primary key 1s “CustomerlD”. Before each
experiment, we populate 144,000 customer information and
100 records for each customer.

Performance evaluation: Firstly, transaction submission
rate and transaction abandon rate of loop detection
method is evaluated and those of Percolator are also
measured, then they are comparatively analyzed. In this
experiment, 3 HBase servers to which all of the data are
distributed are adopted and then the quantity of
concurrent client machines are gradually increased in
order to increase the amount of concurrent transactions
[also known as the Multiprogramming Level (MPL)]
(Revilak et al., 2011). The test results are not shown in
Fig. 13 and 14.

As 13 shown in the figures, when the system’s
transaction processing ability is not fully saturated, with

8442

Inform. Technol. J., 12 (24): 8435-8445, 2013

2500 : i .
—=—. Percolator ! ‘.1!-_‘
. : H F- i
—#— iPDCC : :
! ! ! -4 !
p2010 14| SEEEREE e EHEREREY SRS PN - - e
: f ¥ Fai
& 4
v -;‘.-"
1 | LA '
1500} - - - e frmne el '_:‘I..... R o
o :
% b~ .
= iy ‘
o at H 1
100 R =il : :
W i : i
[g L P
P : ! !
£ ! E
f“ ' i i
0 : H H
0 10 20 30 40 50
MPL
Fig. 13: Transaction submission rate
300 — . . .
—=— 1 Percolator: L ¥
—=—iPDCC ; i
1510) R S PP SRR A
i I'.l :
| H _?'. |
§ 200L. ! » L f ..,ﬁ‘_
ju 4
S A
8 ! A
g 150 e o of L
g /
= i ;A
® i] b KR i
L] S e ooy s L
1 ; _.-")él
! Py !
i A5 3
=
0 10 20 30 40 50
MPL

Fig. 14: Transaction abandon rate

the increase of concurrent transactions, the two systems’
transaction submission rate displays logarithmic growth
and their transaction abandon rate increases
exponentially, for the reason that, with the increase of
concurrent transactions, the possibility for many
transactions to process the same data set mcreases, so
does transactions abandon rate according to the
principles of FUW. What's more, Percolator is
non-serializable transaction processing method, some
transactions resulting in abnormal data are also submatted,
however, PDCC will abandon these abnormal
transactions, so Percolator’s transaction submission rate
15 ligher than PDCC’s while its transaction abandon rate
1s lower than PDCC’s.

800 . i
—&— Percolator ' b
i i 1 i
—#— PDCC H . L
700f - - - . : e Rt Gt SELEEE"
L T
7 600kdums n it e s s £ b)
" T -
a [A
= - r F-
9) A G
£ ! ol] 1
E 500} == - ./f/.f:f... prese ,
8 i i
= 1 : :
400} cweeans '_._j.'..._,ii-..._._..L_._._...'. (ETE— .
300} -- S g e reiaR R e e %
200k] i H H]
3 4 5 6 7 8 9

No. of server

Fig. 15: Scalability

Then, PDCC’s scalability 1s evaluated. When the
transactions are over-loaded, the system’s transaction
submission rate will decrease rapidly, so, in this
experiment, only the maximum transaction submission
rate at different server scales 1s recorded. The test
results as shown in Fig. 15 which demonstrates that both
of them enjoy good scalability but, with the increased
server quantity, transaction throughput also mcreases,
followed by more flerce transaction competition;
therefore, with the increased server quantity, the
enhancement of transaction submission rate gradually
weakens.

CONCLUSION

For SI transaction serializability anomalies in cloud
computing environment, this paper puts forward a
distributed transaction dependency loop detection
method which overcomes some affairs in the cloud
computing environment, such as building dependence
graph (TD@G) , detecting transaction dependency loop etc.,
by the following three technology: (1) In each node
stores, we design a distributed transaction dependency
table to record transaction and transaction dependency
relations; (2) More extensive transaction dependency
relations are transferred between nodes; (3) Detecting
transaction dependency loop and transferring the result
among nodes. Based on the transaction concurrency
control method: Percolator and open source cloud
database: HBase, we Implementation and test in the
PDCC. The experimental results show that PDCC solves
the SI transaction serializability anomaly problem and has
better performance and scalability.

8443

Inform. Technol. J., 12 (24): 8435-8445, 2013

ACKNOWLEDGMENTS

The authors would like to thank for the support by
National Basic Research Program of China (973 Program)
under Grant No. 2011CB302601, National High
Technology Research and Development program of China
(863 Program) under Grant No. 201 1AA01A202, Science
and technology program of Hunan Province under Grant
2013FT4335 and 2013FT4295 and the constructing program
of the key discipline in Huaithua University.

REFERENCES

ANSI, 1992. Database language-3QL. American National
Standard X3.135-1992, November 1992,
http://www.itl mst gov/div897 /etg/dm/sql info html

Adya, A, 1999. Weak consistency: A generalized theory
and optimistic implementations for distributed
transactions. Ph.D. Thesis, Massachusetts Institute
of Technology, Cambridge, MA ., USA.

Adya, A., B. Liskov and P. O'Neil, 2000. Generalized
isolation level definitions. Proceedings of the 16th
International Conference on Data Engineering,
February 29-March 3, 2000, San Diego, CA., USA |
pp: 67-78.

Alomari, M., M. Cahill, A. Fekete and U. Rohm, 2008. The
cost of serializability on platforms that use snapshot
solation. Proceedings of the IEEE 24th International
Conference on Data Engineering, April 7-12, 2008,
Cancun, Mexico, pp: 576-585.

Berenson, H., P. Bernstein, J. Gray, I. Melton, E. O'Neil
and P. O'Neil, 1995. A critique of ANSI SQL 1solation
levels. ACM SIGMOD Rec., 24: 1-10.

Brewer, E.A., 2000. Towards robust distributed systems.
Proceedmgs of the 1 9th Anmual ACM Symposium on
Principles of Distributed Computing, July 16-19, 2000,
Portland, OR., USA., pp: 7.

Cahill, M., U. Rohm and A. Fekete, 2008. Serializable
1solation for snapshot databases. Proceedings of the
ACM SIGMOD International Conference on
Management of Data, Tune 9-12, 2008, Vancouver,
Canada, pp: 729-738.

Calll, M., U. Rohm and A. Fekete, 2009.
Serializable 1isolation for snapshot databases.
ACM Trans. Database Syst, Vol. 34, No. 4.
10.1145/1620585.1620587

Chang, F., J. Dean, S. Ghemawat, W.C. Hsieh and
D.A. Wallach et al, 2006. Bigtable: A distributed
storage system for structured data. Proceeding of the
7th USENTX Symposium on Operating Systems
Design and Implementation, November 6-8, 2006,
Incline Village, Nevada, USA., pp: 205-218.

Cooper, BJF., R. Ramakrishnan, U. Srivastava,
A. Silberstein and P. Bohammon et ai., 2008. PNUTS:
Yahoo!'s hosted data serving platform. Proc. VLDB
Endowment, 1: 1277-1288.

Das, S., D. Agrawal and A.E. Abbadi, 2009. ElasTraS: An
elastic transactional data store m the cloud.
Proceedings of the Workshop on Hot Topics in
Cloud Computing, June 14-19, 2009, San Diego, CA.,
USA., pp: 1-5.

Das, 5., D. Agrawal and A E. Abbadi, 2010. G-store: A
scalable data store for transactional multi key access
m the cloud Proceedings of the 1st ACM
Symposium on Cloud Computing, June 10-11, 2010,
Indianapolis, IN., USA., pp: 163-174.

Das, S., 8. Agarwal, D. Agrawal and A.E. Abbadi, 2010.
ElasTra3: An elastic, scalable and self managing
transactional database for the cloud. UJCSB Computer
Science Techmcal Report 2010-04, Umversity of
California, Santa Barbara, CA., USA., pp: 1-14.

DeCandia, G., D. Hastorun, M. Jampam, G. Kakulapati and
A. Lakshman et al., 2007. Dynamo: Amazon's highly
available key-value store. Proceedings of 21st ACM
SIGOPS Symposium on Operating Systems
Principles, October 14-17, 2007, Stevenson, WA,
USA, pp: 205-220.

Fekete, A, 2005 Allocating 1isolation levels to
transactions. Proceedings of the 24th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, June 13-17, 2005, Baltimore,
MD., USA., pp: 206-215.

Fekete, A., D. Liarckapis, E. O'Neil, P. O'Neil and
D. Shasha, 2005, Making snapshot 1solation
serializable. ACM Trans. Database Syst., 30: 492-528.

Fekete, A., E. O'Neil and P. ONeil, 2004. A read-only
transaction anomaly under snapshot isolation. ACM
SIGMOD Rec., 33: 12-14.

Fekete, A., SN. Goldrei and J.P. Asenjo, 2009. Quantifying
isolattion anomalies. Proc. VLDB Endowment,
2: 467-478.

Gilbert, S. and N. Lynch, 2002. Brewer's conjecture and the
feasibility of consistent, available, partition-tolerant
web services. ACM SIGACT News, 3: 51-59.

Helland, P., 2007. Life bevond distributed transactions:
An apostate's opimion. Proceedings of the 3rd
Biennial Conference on Innovative Data Systems
Research, January 7-10, 2007, Asilomar, CA., TJSA .,
pp: 132-141.

Jorwekar, S., A. TFekete, K. Ramamritham and
S. Sudarshan, 2007. Automating the detection of
snapshot isolation anomalies. Proceedings of the
33rd International Conference on Very Large Data
Bases, September 23-28, 2007, University of Vienna,
Austria, pp: 1263-1274.

8444

Inform. Technol. J., 12 (24): 8435-8445, 2013

Levandoski, I.T., D.B. Lomet, M.F. Mokbel and K.K. Zhao,
2011. Deuteronomy: Transaction support for ¢loud
data. Proceedings of the 5th Bienmal Conference on
Inmovative Data Systems Research, January 9-12,
2011, Asilomar, CA., TJSA ., pp: 123-133.

Peng, D. and F. Dabek, 2010. Large-scale incremental
processing using distributed transactions and
notifications. Proceedings of the 9Sth USENIX
Conference on Operating Systems Design and
Implementation, October 4-6, 2010, Vancouver,
Canada, pp: 1-15.

Revilak, S., PE. O'Neil and E.J. O'Neil, 2011. Precisely
serializable snapshot isolation (PSSI). Proceedings of
the TEEE 27th International Conference on Data
Engineermng, April 11-16, 2011, Hannover, Germany,
pp: 482-493,

Vo, HT., C. Chen and B.C. Qo1, 2010. Towards elastic
transactional cloud storage with range query
support. Proc. VLDB Endowment, 3: 506-514.

Vogels, W., 2009. Eventually consistent. Commun.
ACM-Rural Eng. Dev., 52 40-44.

Wet, 7., G. Pierre and C H. Chi, 2009. Scalable transactions
for web applications in the cloud. Proceedings of the

15th International Euro-Par Conference,
August 25-28, 2009, Delft, The Netherlands,
pp: 442-453.

Zhang, C. and H. De Sterck, 2010. Supporting multi-row
distributed transactions with global snapshot
isolation using bare-bones HBase. Proceedings of
the 11th IEEE/ACM International Conference on Grid
Computing, October 25-28, 2010, Brussels, Belgium,
pp: 177-184.

Zhang, C. and H. De Sterck, 2011. HBaseSI: Multi-row
distributed transactions with global strong snapshot
isolation on clouds. Scalable Comput.: Pract.
Experience, 12: 209-226.

8445

	ITJ.pdf
	Page 1

