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A Kind of Truncated Particle Filter
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Abstract: The truncated particle filter was proposed based on the analysis of residual particle filter and
regularized particle filter. The maimn idea of the truncated particle filter was to draw the new particles from the
resampling area of the particles with large weights, rather than point-wise determine the repetition number of
each particle. The effective resampling areas were established by these particles whose weights were larger than
the truncated value. The uniform kernel was used to draw new particles from these areas. This method combined
the information contained in the prior transformation function and the likelihood function, meanwhile increased
the particle diversity. The simulation results showed that the truncated particle filter reduces the computational
complexity, meanwhile maintains the same estimation accuracy as the common resampling algorithms.
Furthermore, this new algorithm greatly shortened the estimated time and improves the stability of the estimates.
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INTRODUCTION

As the Bayesian filtering approach, the particle filter
which is based on sequential Monte Carlo sampling can
effectively deal with the non-linear and non-Gaussian
problems. In recent years, this method has been applied
In many areas, such as digital commurmcations, financial
data analysis, mmage processing, adaptive estimation,
speech signal processing, machine learning and et al. The
Sequential Importance Sampling (SIS) algorithm was
proposed m 1950s which is viewed as the prototype of the
particle filter. Gordon ef af. (1993) proposed the Sampling
Importance Resampling (STR) method in recursive
Bayesian filter (Gordon et al, 1993). And a lot of
improvements are proposed after that, such as
Gaussian/Gaussian sum particle filter (Kotecha and
Djuric, 2003a, b), unscented particle filter (Cheng and
Bondon, 2008), regularized particle filter (Musso et al.,
2001). A few tutorials have already been published on the
subject (Arulampalam et al, 2002; Cappe et al., 2007,
Arnaud and Johansen, 2011).

The resampling schedule is a very intuitive idea but
plays an important role in the particle filter. Currently, in
literature quite a few different resampling methods can be
found. Te summarize, the three most popular algorithms
of them are multinomial resampling, residual resampling,
stratified resampling/systematic resampling (Armaud and
Johansen, 2011). The basic idea of these resampling
schedules is to replicate the particles with large weights,
meanwhile removing the ones with small weights. As a
result, the number of the particles is the same n every

generation. Hol et al. (2006) analyzed these algorithms in
term of the resampling quality and computational
complexity.

The resampling schedule mentioned above relieves
the particle degeneracy but also introduces the limitation
of the calculation speed of the particle filter. This means
that the new particle set 1s established after the repetition
number of each particle in the original set 15 calculated. On
the other hand, Gordon et al (1993) and Musso et al.
(2001) point out that the particle system will concentrate
in areas of interest of the state space if the more likely
particles are selected. So if these areas were established
firstly, then draw the new particles from the areas, we
could get the new particle set. So this paper study the
areas of interest of the state space and ‘resample” the new
particles from these areas.

PARTICLE FILTERS

Dynamic state-space model: The general nonlinear, non-
Gaussian dynamic state-space model can be expressed as
follows:

X = (e, Vi) (1)
¥ie = h(x, vi) (2)

where, x, denotes the state of the system and follows a
Markov process, vy, is the output observation, v, and n,
are 1i.d.  process and observation noise,
respectively, f, represent the deterministic process and h,

noise
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represent the measurement models. The initial distribution
(at k = 0) 13 donated by p(x,) 1 order to complete the
specification of the model.

Generic particle filer: The generic particle filter consists
of Sequential Importance Sampling (SIS) and resampling
schedule. This section begmns with the SIS method, then
describes the residual resampling and the regularized
resampling which are mainly concerned in this study.

Sequential importance sampling: Given all the available
information, the posterior probability density function of
the current states x,, can be approximated as:
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where, 8() is the Dirac delta measure, {x'\,,i=1, ..., Ntis
a set of support particles with associated weights
fw', 1=1, ..., N}. And the weights are normalized such
that ¥'wi=1. As N-o, the discrete weighted
approximation will approach the true posterior density
P(Xg4fy:4). But drawing from p(xg,|y,,) directly is usually
different. So the particles are actually drawn from a
proposal distribution () which is called an important
density. And the so-called importance weights are defined
as:
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A simple but efficient choice of the important density
is the priori probability density:

QXK ¥'ie) = PIKYX) (3
The new estimate of the p(xy.|x,,) 1s given by:
CCMPIVED AL CHEE N ©)
Where:
W, =k (7
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Resampling: To avoid the degeneracy of the SIS
algorithm, a resampling schedule is introduced in order to
eliminate samples with low importance weights and
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replicate samples with high importance weights. As
mentioned before, there are three of the most commonly
used resampling approaches. In this paper, we will
describe some details of residual resampling.

The new particle set consists of the main particle set
and the residual particle set in the residual particle filter.
And the main particle set 15 determined by the mteger
component and the residual particle set is achieved
through the multinomial resampling. A pseudo-code
description of the residual resampling is given by

algorithm 1:

Algorithm 1: Residual resampling

1: The main particle set
Fori=1, ..., N, allocate 1, = [N} | copies of particle xi, where
| | donates the integer part. So the main particle set is {x/¥ , where

=1 ?

N i
N'= ny -
i=1 ¥

2: The residual particle set
Calculate the mumnber of the residual particles: M =N-N; The weight
of particle xi is rewritten as w' = (Nwi-n')/N’; Obtain x i.i.d.
draws from (=} w3, . sothe residual particle set is ¢z .

il ”

Residual resampling considers the expected number
of replications of each particle and deterministically
replicates some of the particles, then the non-mteger
(residual) components of Nw', are treated. So the degree
of randomness mtroduced by the resampling procedure 1s
reduced and the residual resampling has smaller Monte
Carlo variance (Liu and Chern, 1998).

Regularized particle filter (RPF): The RPF is identical to
the generic particle filter, except for the resampling
schedule. Tn the generic particle filter, the resampling
produces a new particle set where several particles may
have the same location in the state space. The situation
will be worse when the system noise is small or
nonexistent and the particle system may rapidly collapse
to a single value. So the regularized particle filter was
proposed to increase the diversity of the filter.

The basic idea of RPF is that the samples are draw
from a continuous distribution rather than a discrete one
in generic particle filter. The RPF resampling from a
continuous approximation of the posterior density which

is obtained by using the kernel density estimation
method:

p(xk‘YI;k)zﬁ(Xk‘YI;k)ZZilllvv‘kKh(Xk_X;:) (8)
where, K, = (1/h") K(x/h) 1s a rescaled Kemnel density, h>0
1s the kernel bandwidth, n, 1s the dimension of the state
vector. The kernel density is a symmetric probability
density function.
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The kernel K() and the bandwidth h are chosen to
minimize the mean integrated scquare error. In the special
case of all the samples having the same weight and the
underlymg density 1s Gaussian with unit covariance
matrix, the optimal choice of the kernel is the
Epanechnikov leernel.

Truncated particle filters: As described above, the new
particle set consists of the main particle set and the
residual particle set in the residual particle filter. The main
particle set contains those particles with larger weights
and the weights of those particles are actually larger than
1/N. If the threshold is smaller, then the more particles will
fall in the main particle set. So the new main particle set is:

K =5, wh=wl w21/ (kN), i=1..,N @)
where, Ik, is the truncated value.

The main particle set will be a special subset of the
original particle set which only contains a few of those
particles but the sum of the weights will approach 1 as k,
increases. In the particle filter, the resampling schedule
will multiply the particles with the larger weights and
discard those with smaller weights. It is easy shown that
almost all of the multiplied particles will be in the main
particle set if k, is larger enough. These particles in the
main particle set will be “effective particles’. The main
purpose of establishing the residual particle set is to
ensure the same number of particles and increase the
particle diversity.

In particle system, the intwtion is that the more
particles selected from the areas of interest of the state
space, the better estimation of the posterior probability.
Based on the nformation at hand, the spatial extent of the
main particle set 1s equivalent to these areas which could
be established by mequality Eq. 9.

After these areas are established, the regularized
resampling could be applied on them. As mentioned
above, the normal choice 1s the Epanechnikov or Gaussian
kernel. But mn this paper, the uniform kermnel 1s used. There
are three reasons for doing this. Firstly, the uniform kernel
is the simplest one of the kernel functions which are
commonly used. Secondly, the particle filter deal with a
cloud of particles, not single one. So the drawing could be
applied almost simultaneity. Last but not least, a large
number of particles could reduce the errors due to the
different regularizations. For example, in the case where
the process noise 1s small, the particle system may rapidly
collapse to a single particle (Gordon et al., 1993). The
particle filter could draw the new particles from the areas
around the smgle one by the regularization. Then the
errors due to the different regularizations might be smaller
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as the number of the particles increases. So the

truncated particle filter is proposed in this study.
A pseudo-code description of the truncated particle
filter 1s then given by algorithm 2.

Algorithm 2

1:  Initialization: k=10

Fori=1, ..., N, draw the states x}; from the prior p(xg)
Fork=1,2, ...

Fori=1, ..., N, Draw x} from q(xx%, ¥:2); Calculate the
importance weights wh according to Eq. 4

Fori=1, ..., N, Normalizing the important weights according
to Eq. 7; Truncating the particles with small weights:

2:

(%, =, Wy, =wy W, 21/ Mi=1, N}

Normmalizing the important weights according to:
wi=wi/ Y
And the states at time k may be approximated with:
3
Calculate the range of the main particle set:
Xpin = MIN(XYY) X = max(x’y)
Resample:
By = Fpasn T 1K ~ )

wy = I/N, where i is the auxiliary points and drawn from
Ulo.1].

The systematic diagram for truncated particle filter is
shown m Fig. 1. The new algorithm is equivalent to the
SIS algorithm with a band-pass filter. The likelihood
function 1s used as the filter which removes the particles
with the low weights while retaiming the ones with large
weights.

After introducing the proposed algorithm, we will
discuss the choice of some parameters:

The range of the truncated value k,. This value could
be constant or changed with the sum of the weights
in the main particle set. Firstly, as a constant, k, is
equal to 1 in the residual particle filter. As the
truncated value decreases, there are more particles in
the main set. The TPF is equal to the SIS algorithm
when the whole particles are in the main set which
means that k, 1s very large. So we recommend the
range of the truncated value is [2,4]. Otherwise, this
value could be set as the sum of the weights in the
main particle set 1s larger than a special value, such
as 0.98

The distwrbance of the single particle. There is
common phenomencn that the particle system might
concentrate on a single point of the state space and
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Fig. 1: Systematic diagram for truncated particle filtering

this pomt 18 an ‘1solated point”. In TPF, this means
that x;, is equal to x.. Gordon et al. (1993) point out
that the ‘brute force’ approaches could overcome
this difficulty by using the disturbance. The solution
1s replicating this particle as the normal resampling
schedule or resampling randomly around this particle
in very small areas

SIMULATION

Here, we consider a Univariate Non-stationary
Growth Model (UNGM) and the process model and
measurement model of the simulated objects are given as
follows:

x, = 0.5%,, +25%,_ /(1+ %) +8cos(1.2K) + u, (10)
V=X /204,

where, 1, and v, are zero mean Gaussian random
variable with variances Q, and R,, respectively. Given the
process noise variance Q, = 10 and the measurement
noise variance R, = 1, the particle number 1s N = 100. And
the itial state was taken to be x, = 0.1 with variance
q =5 This system has been analyzed in many
publications.

In this study, the estimation and prediction of the
STS, Residual Particle Filter (RiPF), System Particle Filter
(SrPF), Multinomial resampling Particle Filter (MiPF) and
Truncated Particle Filter (TPF) are compared with the root
mean square error which 1s defined as:

(11)

1 N
RMSE:[;E;(M ~ &,

After 500 times of Monte-Carlo simulation, the
average result 1s given in Fig. 2 and Table 1.

According to the simulation results and figures, the
following mformation can be easily obtained:
+  Estimation result: The state estimation results of the
multinomial resampling particle filter, the residual

OO,
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Fig. 2: True values of the state, estimated values of
various algorithms

Table 1: Comparison between average RMSEs and runtime of various

algorithms
Algorithm Means of RMSE Variances of RMSE  Time (sec™!)
SIS 10.5297 0.1877 0.0532
RrPF 5.0727 1.6585 0.0712
MrPF 5.0113 1.1134 0.0722
StPF 4.8863 1.5436 0.0663
TPF 5.0727 0.9510 0.0589

resampling particle filter, the system resampling
particle filter and the truncated particle filter are
very close. But the variance of the RMSE of the
truncated particle filter is less than the other
algorithms. This means that the new proposed
algorithm is more stable than the other resampling
schedules

Running time: The running time of the truncated
particle filter is much less than the other three
resampling algorithms, even close to the SIS
resampling algorithm. The reason is that the new
algorithm focuses to obtain the effective areas of
particles, rather than to establish particles pomnt by
point. The other three resampling algorithm consider
the repetiions of each particle, thereby increasing
the running time
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CONCLUSION

Firstly, the residual particle filter and regularized
particle filter are analyzed and then a kind of truncated
particle filter is proposed based these particle filters. The
new algorithm establishes the areas of interest of the state
space only by using the truncated value and resamples
the new particles uniformly from these areas, so the
computation efficiency 1s improved. Moreover, the
filtering accuracy 1s still as low as the popular resampling
schedule. The next phase of the study 13 to improve
filtering accuracy while reducing the computational time.
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