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Abstract: The key for the Fimte Impulse Response (FIR) filter with equiripple characteristic 1s adjusting the

extreme fluctuation of the frequency response in an appropriate way. Therefore, this study utilizes the non-
uniform frequency sampling technology to control the extreme fluctuation in the frequency response, and

exploits the iterative least-squares scheme to find the good solution. The proposed algorithm directly
suppresses the fluctuation at the extremum of frequency response in an iterative way, finally leading to nearly
equiripple filters. Note in such process, the extremum of frequency response is found by solving the nonlinear

function through Newton’s iteration. Simulations show that the proposed method results m a nearly equiripple
fluctuation of frequency response in the passband and stopband, while the iteration number and computation

complexity are sigmficantly reduced, thus, it 1s more suitable for real-world applications.
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INTRODUCTION

The digital filter 1s used for filtering unwanted signal
and leaving the useful signal in signal process, which had
originally be proposed for speech compression for 25
yvears (Crochiere and Rabiner, 1983; Lyons, 2004).
Moreover, systems also
exploit many filters, such as the channel equalization
filter bank (Scaglione et al., 1999) and the matched filter
(Ruan et al., 2012).

Besides the Infinite Tmpulse Response (TTR) filter
(Konopacki and Moscinska, 2007; Lai and Lin, 2010), the
Fnite Impulse Response (FIR) filter (McClellan and Parks,
2005; Lim, 1983; Johnson Ir., 1990; Lai, 2009; Hua et al.,
2012) are more popular m wireless applications, where it
can be designed by the window method, the Frequency
Sampling  Methods (FSM), the method
(Tfeachor and Jervis, 2003), the frequency response mask
method (Konopacki and Moscinska, 2007) and the
Weighted Least-Squares (WLS) method (Lim et al., 1992).
Among these methods, the window method and FSM are
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simpler and widely used. The window method has been
discussed comprehensively in many literatures, such as

(Oppenheim et al., 1999). However, few literatures care
about the FSM. Moreover, both the window method and
the FSM are difficult to yield equiripple filters and as we
know the equiripple passband is preferred for
commurmcation applications (Proakis, 2000). Thus, this
paper pays attention on the equiripple filter design with
the Frequency Sampling Principle (FRP). Note the FSM is
a specific application of the FRP.

Cetin et al. (1997) used the FRP and fast Fourier
transform (FFT) to implement the equiripple filter design,
which required a high frequency resolution and therefore
large complexity due to its umform frequency sampling,
e.g., it uniformly sampled the digital frequency [0, 21) mto
L discrete frequencies {w,}, then calculated the frequency
response and adjusted fluctuation at the frequency w,. In
fact, Cetin wanted to use the uniformly distributed
frequency vector to cover the frequency vector that has
the extreme fluctuation in the frequency response, the
latter is called the extreme frequency vector in this paper.
However, the extreme frequency vector usually 1s non-
uniformly distributed, thus, the deviation from this
frequency vector becomes trivial only if the frequency
resolution is very high, ie, L equals 1024 or more,
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resulting in huge computation loads. Otherwise, the
produced filter also deviated from the equiripple filter in
some sense.

In order to tackle Cetin’s 1ssue, this paper combines
the non-uniform frequency sampling and the Least
Squares (LS) pnneiples (Lim ef al., 1992) to design the
filter. The LS mampulation relaxes requirements of the
sample number and the frequency resolution, while the
non-umform frequency sampling significantly reduces the
deviation mentioned above. In fact, by means of the
Newton’s iteration (L1 et al., 2008), we can easily obtain
the actual frequency vector that has the extreme
fluctuation m the frequency response. Aside from the
frequency calculation, this paper also compares two
fluctuation clipping methods. The first is only adjusting
the frequency response at the extreme frequency vector,
where the vector length (K) must be a half of the filter
length (N) (Lim et al, 1992), resultng in lower
complexity. The other method arises from (Cetin et al,
1997), where the frequency region [0, o Ju[w, 7] is
partitioned inte several non-uniform subintervals
according to the extreme frequency vector, and each
subinterval 13 umformly sampled into L/K  discrete
frequencies. The computer simulation shows that the
concemned algorithm  outperforms the method of
Cetin et al. (1997) in terms of the filter performance and

the complexity.
BASIC THEORY FOR FIR FILTER DESIGN

Taking the type-II linear phase FIR filter as an
example, its frequency response can be represented as
Oppenheim et al. (1999):

Hie™)- E" 2h(n) cos[m(¥ - n)]}e"m A (D)

where, M (N-1)2. h[n] and N denote the
filter coefficient and the filter length. A (w be shown
as:

Aflw) = izh(n) cos[ox N;I

-n)]= ia(n) cos[a(n +%)] (2)
From above formulae, we have:

la(an),ClS n=M
h(n) = (3)

1
Ea(nfM),M +1=n=N-1
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Let h = [h(0), h(1),...h(M)]" and x = [a(0),a(1),... a(M)]",
there exists:

Almy=x"c(w) ()

with:
¢ (®m) and {cos(m(O + %)), cos{m(1+ %)),...,co((n(M + %))}

and [+]"is the transpose operation. From (4), we know that
for a given frequency wy, A (w,) 1s the linear combmation
of the element of h. Then multiple values for w, can be
chosen to construct the linear equation group and the LS
principle can be used to solve this equation group.

Now, the problem turns to be which and how many
w, i enough for the filter design, i.e., the frequency
distribution character of the frequency set {w,}. In
previous literature, we know that such frequency
sampling operations affect the final filter significantly.
Generally, the umiform distribution, the
conventional FSM and Cetin’s method, is the most

such as

simple and popular choice. However, 1 order to obtain
the nearly equiripple filter, the uniform distribution
requires high frequency resolution and therefore lager
computation loads. Thus, the non-umform frequency
sampling will be preferred.

NON-UNIFORM FREQUENCY SAMPLING

BASED DESIGN
In order to tackle the weakness of umform
frequency sampling, here we combine the non-tmiform
frequency sampling technique and the least-squares
principle to design the equiripple filter. Taking the type-11
linear phase FIR filter as an example, then the
conventional FSM has N/2 controllable frequencies
(discrete frequencies in consideration), which equals to
the element of the extreme frequency vector. In
contrast, this paper mcorporates non-uniform frequency
sampling and least-squares algorithm, which can be
understood as a generalized FSM.

With regard to the equiripple filter, the key 1s to limit
the frequency response fluctuation at the extreme
frequency vector. Sometimes such fluctuations are called
approximating errors compared with the ideal lowpass
filter. Here, we present an iterative method to realize the
fluctuation suppression, which can be expressed as
follows:
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Tnitialization: Set the initial filter coefficients, e.g., the
result of standard LS method (Ifeachor and Jervis, 2003,
Lim et al., 1992).

Determination of the extreme frequency vector: Assume
that h,, is the current filter coefficient vector, we can
substitute it into (2) and then find the extremum of A(w)
by Newton iteration technique. Consequently, the extreme
frequency set ({04 .= 1. 2...., N/2}) and the zero phase
response at these frequencies ({A (0 i) can be
obtained.

Determination of the controllable frequency vector: The
non-umform frequency sampling can be standard or over
sampled. For the standard frequency sampling, namely
scheme I, the extreme frequency set of step 2) is the
desired controllable frequency set Moreover, if the over-
sampling 1s taken mto consideration, namely scheme 11,
we first divide [0, 2m) into several non-overlapped
subintervals bordered with the extreme frequency and
then we wmiformly take| 1./(N/2) | discrete frequencies from
each subinterval (| | is the rounded function). No matter
what scheme is used, we express the controllable
frequency as w, and the extreme frequency as @, ..

Changes of A(w) at the controllable frequency vector:
Ajlwy) checked for each w,, if
approximation error 1s larger than a certam threshold (T),
the frequency respomse 1s modified, 1e., if |A,(w,)-
1|*W=T at the passband, the updated frequency response
leads to A, (w,) = sgn[A,(w,)-1]xT/W+1, where sgn[e]
and W denote the sign function and the error weighted
factor. Note W can be valued differently in the passband
and the stopband. For simplicity, we choose W =1 in our

18 its absolute

study.
Now the remaining problem is how to define the
threshold. In order to improve the equiripple

characteristic, the dynamic threshold is employed mn the
tteration process. Iirst, the passband thresheld T = D,
with D, = mean(|A ;(w,)]-1), where mean(X) represents the
mean value of vector X. It is clear that D, 1s a dynamic
number related to the current frequency response. Since
W 1, the stopband threshold D, D,. Then if
A =D, at the stopband A, .(w,) = sgn[ Al w )] *xT/W.

LS based filter design: Since the zero phase response at
a given frequency w, is the linear combination of the
element of impulse response h, we can construct a new
equation group according to formula (2) and A, {w,) and
then derive the new impose response h,,,, through the LS
method.

877

Tteration stop decision: Comparing the mean-square
deviation between h,,, and h,,, if it is less than a given
threshold 1), the iteration stops. Otherwise, b, = h,.. And
go back to step 2).

The threshold 1 is related to the equiripple property
to some extent and 1 = 10° in our study.

SIMULATIONS AND ANALYSIS

This section presents the numerical results to
compare the proposed method with previous works
and the simulation condition 1s shown i Table 1,
where N, W, [ and f represent the filter length,
the ripple ratio, the passband cutoff frequency and
the stopband start frequency, respectively. Note
‘Scheme " and ‘Scheme II" are defined earlier m
step 3).

Table 2 presents the performance comparison of the
preposed methed and Cetin’s method, where R, A, 8., 3,
and f, denote the log-normal passband ripple, the
stopband aftenuation, the linear passband, the linear
stopband ripple and the 3 dB bandwidth, respectively. We
explicitly see that Cetin’s method produces the largest
iteration number and the worse filter performance, while
the proposed scheme T and scheme I yield similar
performance, which indicates that the non-uniform
frequency sampling owns an advantage in iteration
number reduction. Maoreover, in order to make further
comparisons, we present Fig. 1-3. From these Fig. 1-3,
we clearly find that the proposed scheme T outperforms
the scheme II due to its regular equiripple in the passband
and the stopband.

According to the above results, it can be said that
the proposed scheme I with non-umform frequency
sampling produces the best performance and the least
complexity, thus, it 1s more suitable for practical FIR filter
design and substantially benefits the engineering
application.

Table 1: Sirmulation conditions

Conditions Cetin’s method Scheme I Scheme IT
N 48.00 48.00 48.00

W 1.00 1.00 1.00

fF 0.24 0.24 0.24

f, 0.30 0.30 0.30
Table 2: The performance comparison of three methods

Index Cetin’s method Scheme I Schemne IT
Tteration mimber 2345 890 1443

Ry (dB) 0.507 0.483 0.486

A; (dB) 30.836 31.282 31.277
&y 2.918e-2 2.785¢-2 2.797e-2
&, 2.955¢-2 2.804e-2 2.805¢-2
f, 0.240046 0.2400065 0.240048
f, 0.259238 0.259604 0.259594
f 0.299044 0.299912 0.299942
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Fig. 1(a-d): The filter performance of Cetin’s method (a) Magnitude response (standard), (b) Passband (w, = 0.24005mx;
Rp = 0.50714 dB), (c) Transition (w.= 0.25924 7, @, = 0.26968m) and (d) Stopband (w;= 0.29904mx;
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CONCLUSION

This research studied the application of non-uniform
frequency sampling in the FIR filter design and the
simulation results show that the non-uniform frequency
sampling has a larger advantage in the iteration number
reduction. Moreover, it also outperforms the umform-
frequency sampling method of Cetin m terms of the
stopband attenuation and the passband ripple.
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