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Abstract: In this study, a new single frame techrique for superresolution (SR) based on (symmetric) Daubechies
Complex Wavelet Transform (DCWT) is proposed. DCWT is known for numerous advantages including linear
phase, directionality and nearly invariant to shift, rotation and scale. The high frequency real component
coefticients and all the imaginary compenent coefficients of the DCWT are bicubic interpolated with an arbitrary
factor while the low frequency real component coefficient is substituted with the input image which is bicubic
interpolated with half of the interpolation factor. Synthesis is then done with inverse DCWT resulting into a
SR output. Standard test images are used 1 this work for easy comparison. Visual and tabular results confirm
the superiority of the proposed technique over conventional and state-of-the-art single frame SR methods.
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INTRODUCTION

Current mnaging research seeks high resolution
images from the acquired Lower Resolution (LR)
observation images. Such LR images may have been
obtained with noisy hardware, in poor (blurred) visibility
conditions or aliased. Superresolution (SR) 1s a set of
image processing (software) techniques aimed to enhance
the resolution of an imaging system beyond its sensors
and optical limits. Such techniques are presumably
mexpensive alternatives compared to imposing High
Resolution (HR) unfeasible requirements onto imaging
hardware devices or sensors (Park et al., 2003). SR offer
more details to the user (human or robot) in various
disciplines including: Medical inaging, satellite, texture
analysis, swveillance and more.

SR acquisition methods are classified mto two,
namely; traditional multi-frame method which extracts a
HR image signal from a sequence of Low
Resolution (L.R) frames of the same scene but with slightly
different perspectives and aligned at sub-pixel accuracy
(Zhang et al, 1999). Single frame method is where a
super-resolved 1mage 1s obtained from a single LR
observed image signal. SR from several images is
effective, however, if such image frames are 1dentical, then
there is no extra information to be collected from them and
if the difference between the frames 1s encrmeoeus, then the
information from these frames is almost useless for
reconstructing a single HR 1image. Some cases like MRI

scan enforce a single observation due to health and
economic reasons while in other cases, the LR frames are
simply not enough for multi-frame SR. We restrict
owrselves to single frame SR to overcome shortcomings
of multi-frame SR. Single frame mode Limits delay,
eliminates the need for buffers and expensive memory
operations (Boon et al., 2006). In this study, SR refers to
the problem of enlargement/up-sampling of an image while
avoliding artifacts and maintaining imeage sharpness.
Unlike other sharpening techniques such as restoration
and denoising, SR alters pixel size to increase pixel density
and therefore achieve HR. SR may be considered a second
generation problem to image restoration (Park et al., 2003).

In this study, a single frame SR method based on
interpolation of Daubechies (symmetric) complex wavelet
(DCWT) coefficients is proposed. We are not aware of
any publication relating DCWT and SR prior to writing
this paper. We hope that this work will be a good
reference point.

REASONS FOR DAUBECHIES COMPLEX
WAVELETS

The Discrete Wavelet Transform (DWT) is a powerful
tool for analysis and synthesis of digital images. [ts main
advantage comes from providing localized information in
frequency and time; however, the transform suffers from
shift variance, poor directionality and lack phase
information (Belzer et al., 1995). Modifications have been
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made to the DWT such as undecimated wavelet
transform, however, despite the increased computational
expense, such modifications resolve only some of the
1ssues but not all. Other solutions melude the use of
complex wavelet transforms. Many complex wavelet
transforms have been proposed, such as: Dual tree
(Kingsbury, 2001), steerable pyramid, projection based
complex wavelet transform; these are shift invariant,
provide directionality and phase information However,
Khare and Tiwary (2007), noted that these complex
wavelet transforms are implemented with real valued filters
similar to the DWT and therefore they are not truly
complex wavelet transforms. The real valued filters are
characterized by decinations which result mto high
computational expense and artifacts in resulting images.
A promising alternative solution to the issues above
is DCWT which implements complex valued filters
(Khare end Tiwary, 2007; Lina and Gagnon, 1995, Lina and
Mayrand, 1995; Belzer et al., 1995, Lina, 1997). Inspired by
the application of DCWT to image compression
(Belzer et al., 1995), enhancement and restoration
(Lina, 1997) and target tracking (Khare and Tiwary, 2007),
the same (DCWT), 1s proposed for image SR m this study.
The transform: (1) is nearly shift invariant, (2) can be made
symmetric for easier hardware implementation (Lina and
Mayrand, 1995) and handling boundary problems of fimte
length signals (Zhang et al., 1999), (3) has approximate
linear phase properties which preserve the position of
details in the filtered signal with lower computation cost
(Khare and Tiwary, 2007, Sherlock and Kakad, 2002,
Belzer et al., 1995; Zhang et al., 1999), (4) provides good
directionality and (5) has limited redundancy.

Most energy (averaging information) in the DCWT is
concentrated in the real components while the imaginary
components preserve phase and edge mformation due to
hidden Laplacian operator inherited from the symmetric
constraint. Indeed, the natural redundancy in DCWT
provides dual representation of zero crossings and local
extrema (Lina and Gagnon, 1995).

Let K be a set of real numbers and Z a set of
integers. The scaling equation ¢ (x) given by Eq. 1 can be
constructed through  multiresolution  analysis
(Kaawaase and Chi, 2012). The equation establishes a
connection between the two symmetries in wavelet
theory, namely; dilations and translations.

PO =23 bp(2x - k), xe R ke Z (1)

where, b, are scaling coefficients possibly complex
valued, such that:
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S =1

Besides satisfying multiresolution properties, ¢ (x)
(and consequently the wavelet function  (x) in Eq. (2));
has compact supported in the mterval [-N, N+1], is an
orthonormal basis on a space of square integrable
functions V€L’ (R) and has N+1 vanishing moments.

The general wavelet function is given by Eq. 2:

w(x) =2 a,p(2y-k.xeRkeZ (2)

where, a, are wavelet coefficients also possibly complex
valued. The DCWT exist for all values of N»2, however,
symmetry 1s only possible when N 135 even (Lina and
Mayrand, 1995).

An image function f (x, y) can be decomposed into a
linear combination of translates of the scaling function
¢ (x,y) at some fixed scale and wavelet fumction 1 (x) at
finer scales as shown in Eq. 3:

lpa!
(x,y)+ 2 Zailpj’k(x, y¥), jkeZand x,yeR

fix,y) 2 br g,
k =h
(3)
where, ], 13 lowest resolution level, j, .. 1s the maximum
possible resolution level, b and a! are approximation
and detail coefficients, respectively.

DIGITAL IMAGE OBSERVATION MODEL

The recorded LR observation is assumed to be a
down sampled version of the HR image (scene). The two
are related by a generative model in Eq. 4 and explained by
Fig. 1. Let O, represent an ideal un-degraded image of
M?*x1 pixels sampled at or above Nyquisit rate from a
continuous scene which is also be
band-limited and O, represents the low resolution

assumed to
observed image of N*x1 pixels, then a generative model is
given by:

Common imaging system Observation

o

Original scene
O,

Decim-

Blur ;
ation

Nose

LR image

HR image

Fig. 1: General observation model of imaging system, the
case of a single observation
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0, = ABO 1 (4
where, 13 the decimation matrix with size depending on the
decimation factor and caused by aliasing, B 1s the blur
matrix and n is the N°x1 random (Gaussian) noise
inherent in any imaging system with zero mean and
variance o (Park et al., 2003). The LR observation O, is
aliased, noisy and blurred. This model 13 valid for our
work since the reference image O, is a single observation
which can be generalized to image sequence and higher
dimensions.

Given observation O, SR techniques approximate a
HR image O, of O, In ideal sense, SR techniques remove
noise and blur while recovering an alias-free up-sampled
version of O,

PROPOSED SUPERRESOLUTION METHOD

This section presents the theory and structure of the
proposed SR method. Complex Daubeclhies wavelet
filters can be obtained with the function explained by
Sherlock and Kakad (2002). Multiresolution analysis in 2
D signals 13 accomplished with dyadic quadrature mirror
filters which we have implemented in WaveLab v&50
originally developed by Donoh and applied for
construction of various wavelets (Mallat, 2009).

Proposed procedure: Using the above knowledge, the
DCWT was implemented in Wavel.ab. The DCWT was
then applied to decompose input LR image signal O, into
complex sub-band images namely; low frequency
component also known as approximation (LL), Horizontal
(LH), vertical (HL.) and diagonal (HH). Each of these
complex coefficients 1s composed of a real and imaginary
image component as shown in Fig. 2.

The mnput image O, was bicubic interpolated with an
arbitrary interpolation factor {2 and result was then
used to replace the low frequency real component
coefficient (LL). This act mcreases the system resolution
power (Vandewall et al., 2006). All the other coefficients
(real component high frequency and all the imaginary
components) coefficients were bicubic interpolated with
twice the same arbitrary interpolation factor. The (mverse)
IDCWT was then used to reconstruct the HR image.
Various interpolation methods were evaluated in owr
method as well as direct up-sampling of spatial images;
bicubic mterpolation required more processing time,
however, better quality results were produced compared
to bilinear and nearest-neighbor interpolation methods as
shown in Table 1. This may be due to the algorithm
complexity. DCWT with six vamishing moments was
chosen for its nice trade-off between unage sharpness and
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Fig. 2(a-b). Coefficients {(a) Real component, (b)

Tmaginary component of DCWT

Table 1: Comparison of peak signal to noise ratio for different interpolation
methods used to test proposed method

PSNR for X4 zoom

Mearest neighbour  Blinear Bicubic
Trmage Spatial DCWT Spatial  DCW Spatial  DCW
Lena 25.23 33.62 26.34 34.16 26.85 34.84
Peppers 24.39 3298 25.12 33.01 25.65 3345
Elain 26.64 31.87 27.96 33.08 28.16 33.49
Baboon 20.28 21.71 20.50 24.41 20.60 24.51

noisy results. Fusion of the complex -coefficients

with TDCWT requires all the fow complex
sub-band coefficients as shown by the block diagram
in Fig. 3.

Tnput LR images of resolution 128x128 were obtained
by applying DWT consecutively twice as done by
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Fig. 3: Proposed DCWT based SR method

(Anbarjafar: and Damirel, 2010) and the origmal 512x512
images were used as ground truth for performance
evaluation of the proposed techmque.

A step by step description of the proposed
techmique 1s as follows:

Procedure to acquire the input image:

Step 1: A selected 512 %512 test image 13 decomposed
with DWT

The low frequency coefficient (approximation
(LL)) of the DWT is retained while the high
frequency coefficients, namely; Horizontal (LH),
vertical (HL.) and diagonal (HH) are ignored
(assumed to be equal to zero). The remaining LI
18 exactly half (256x256) of the original (512%512)
mmage dimensions due to decimation

Repeat steps 1 and 2 using the result of step 2 as
mput. This leads to a LR mmage of resolution
128128 which is used as input to the proposed
technique

Step 2:

Step 3:

Procedure for the proposed technique:

Step 1: Decompose the LR (nxm) image with DCWT. The
output are decimated complex coefficients of
resolution /2x m/2

Select an arbitrary interpolation (resolution
enhancement) factor (3, for example, { = 4
Using the selected interpolation factor €, bicubic
mterpolate  the high frequency complex
coefficients (ILH, HI. and HH) together with the
imaginary component of the low frequency
component L.I. of the DCWT. The interpolation

Step 2:

Step 3:
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with Q

Imaginary component coefficient

results are coefficient mnages of resolution
Qn/2xQm/2 coefficient images

Interpolate the origmal LR image with half the
interpolation factor. The result is a blur image of
resolution On/2>m/2

Replace the real component of the low frequency
coefficient (LL) of DCWT with the result of
step 4

Use the IDCWT to reconstruct the high
resolution image. The output 15 a On=Qm high
resolution image in which the lgh frequency
components are more preserved compared to
direct interpolation with conventional techmques

Step 4:

Step 5:

Step 6:

QUALITY OF RE-SAMPLED IMAGE

Interpolation, also known as re-sampling is a method
to increase or reduce the number of pixels in a digital
image by estimating image values at locations in between
pixels. Image quality loss during interpolation based SR 1s
mainly caused by high frequency edge smoothing evident
in Fig. 4b. Image quality critically depends on edge
preserving. Anbarjafar: and Damirel (2010) applied DWT
to preserve high frequency edges. Although, the
asymmetry in DWT scaling functions does not seem to
introduce sigmficant asymmetry in the results, more
accurate results can be obtained by using symmetric
scaling function m DCWT (Gagnon and Lina, 1994) which
1s more equipped to preserve such edges and overcome
several shortcomings of DWT m section II.

RELATED WORK

Related  researches  include; the work of
Temizel and Vlachos (2005) in which mmage resolution
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Table 2: Comparison of peak signal to noise ratio for various conventional
and state-of-the art technique
PSNR (dB) for 128x128 zoom X4

Technique Lena Peppers Elain Baboon
Nearest neighbour  25.23 24.39 26.64 20.28
Bilinear 26.34 25.12 27.96 20.50
Bicubic 20.85 25.65 28.16 20.61
DWT SR 34.79 32.19 32.73 2329
DT-CWT 33.74 31.03 33.05 2312
DWT+SWT 34.82 33.06 35.01 23.87
SWT 32.01 29.46 31.25 2274
WZP-CS 29.55 30.14 30.98 21.67
Proposed method 34.84 33.45 33.49 24.51

up-scaling is done with the use of directional cycle
spinning and wavelet-domain zero padding (WZP-CS3),
cycle spmming 1s a method used against artifacts
Cycle spinning aims to
approximate shift-invariant statistics by averaging out
cyclostationarities mtroduced by quantizaton mto
wavelet coefficients of an image during non-exact

m  wavelet denoising.

estimation of high frequency coefficients. Demirel and
Anbarjafari (2010) proposed dual tree complex wavelet
transform (DT-CWT) in a technique
satellite image resolution based on interpolation of
selected sub-bands of the DT-CWT. The DT-CWT has
limited redundancy and is approximately shift invariant
compared to the DWT. Demirel and Anbarjafar: (2011)
used the DWT i conmjunction with stationary
wavelet transform (DWT+SWT) to enhance edges whule
up-scaling the image, high frequency sub-band 1mages of
the DWT and the input image were interpolated and then
stationary wavelet transform was used to enhance edges

to enhance

before inverse transforming the sub-bands with inverse
DWT. The same reference shows SWT individually
applied for resolution enhancement. These state-of-the art
methods have been compared with the proposed method
and results have been tabulated in Table 2 showing
superiority. Standard test images with various features
mcluding Lena, Elame, mandrill (baboon) and peppers
have been used for easy comparison.

RESULTS AND DISCUSSION

In this study, a super-resolved image was acquired
from a LR single frame counterpart by interpolation of
DCWT coefficients. Figure 4a shows the down-sampled
LR input Lena and peppers of 128128 marked with a
square section considered for easy presentation of this
study. Figure 4b shows results of bicubic interpolating
128128 by X4 to get 512x512 for Lena and peppers in
spatial domain while Fig. 4c shows an improved quality
image of the same using our method. The error (residue)
between the ground truth HR original image and the
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reconstructed image was expressed by subtracting the
two images. Figure 5 shows residue (error) between the
ground truth and the reconstructed Lena image: (a) with
our method, (b) direct spatial interpolation with bicubic
interpolation and (¢) using DCWT without replacing the
high frequency coefficient with the interpolated input.
The residue 18 much smaller n: (a) compared to (b) and (c)
hence our method preserves more high-frequency details.
Image quality was measure munerically using Peak Signal
to Noise Ratio (PSNR) in decibel (dB) which can be
calculated by Eq. 5:

PSNR = 10log,, (255" / MSE) (5)

where, MSE 15 the mean square error between O, and O,
given Eq. &

M N 2

1 ~
MSE :MEE[O,(m,n)fO,(mm)]

m=l n=]

(6)

Table 1 compares PSNR values of our method with
the various conventional interpolation methods namely;
Nearest Neighbor, Bilinear method, Bicubic method. The
values conform to visual results in Fig. 4, for example Lena
standard image tested in our method using various
interpolation methods shows 7.99, 7.82 and 8.39 dB
improvement in PSNR over direct interpolation with
bicubic, bilinear and nearest neighbor interpolation,
respectively. Table 2 compares PSNR from our method
with conventional methods together with state-of-the art
methods namely; DWT, DT-CWT, DWT+5WT, SWT and
WZP-CS. Our method yielded sharper edged images
mdicated by lugh PSNR, for example, PSNR of 34.84, 33.45,
2451 dB for Lena, peppers and baboon images
respectively which are higher than conventional and
state-of-the art methods. Elain image resulted in a PSNR
of 33.49 using our method, this was higher than most
methods shown in Table 2, but however, 1t was 1.52 lower
than PSNR of 35.01 given by DWTH+SWT method. Our
method continued to provide sharper edges even at X&
Zoom.

The proposed method implements single frame SR
and therefore attempts to resolve the ill-posed problem of
lack of sufficient low resolution frames for multi-frame SR.

Visual and numerical results indicate superiority
of the proposed techmque over conventional and
state-of-the art single frame SR techniques. The method
reduces noise and blur while up-sampling the images,
however, IDCWT introduced aliasing in the final images
evident in Fig. 4ec, tlus may be handled by hybrid
techniques which combine both local and global
processing methods. Further improvement may be
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Fig. 4(a-c): (a) Original 128>128 pixels with box mark, (b) X4 zoom with direct bicubic interpolation and (¢) X4 zoom with

our method
achieved by DCWT at higher decomposition level Assuming that individual frames are temporarily
and application of more complex interpolation independent, methods for enhancing and restoring a gray
technique. image in cwrent literatwre may also apply to higher
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Fig. 5 (a-c): Residual between ground truth image and superresolved image using: (a) ow method, (b) Direct Spatial
mnterpolation and (¢) Without replacing LL in our method

dimensions for example, color images and sequences
(video). Therefore, it is possible to extend the proposed
technique to higher dimension image signals at the
expense of complexity and delay. Tt would not be
surprising to produce better results in subsequent
applications like remote sensing, target/tumor detection,
HD-TV display, compression and texture analysis if owr
method is implemented in conjunction with such
applications.

CONCLUSION

In this study, a new single frame SR method based on
mterpolation of DCWT coefficients was proposed. DCWT
was implemented with Wavelab and used to decompose
different complex valued sub-band
coefficients; the coefficients were selectively mterpolated
with arbitrary interpolation factor to achieve sub-pixel
accuracy and then reconstruction was done with IDCWT
resulting into super-resolved images. The method was

images into
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tested on four standard images, visual and tabular results
show superiority of the proposed SR method.
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