http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 12 (5): 967-974, 2013
ISSN 1812-5638 / DOL 10.3923/1t).2013.967.974
© 2013 Asian Network for Scientific Information

A Semantic Approach of Service Clustering and Web Service Discovery

YuYue Du, Yong Jun Zhang and Xing Lin Zhang
College of Information Science and Engineering, Shandong University of Science and Technology,
Qingdao 266590, China

Abstract: Web service discovery has always been a hot ssue in the research field of Web services. In this
study, services are grouped mnto functionally similar service clusters through calculating semantic similarity
with WordNet. A Concept Position Vector model of service clusters is proposed, which can sharply cuts in the
number of services that do not completely match the service requests, thus can quickly build up the set of
candidate services. Therefore, the time efficiency of the service discovery can be improved compared with the

general cluster-based method of service discovery.

Key words: Service cluster, semantic similarity, wordNet, service discovery, concept position vector

INTRODUCTION

Nowadays, as SOA (Service-oriented Architecture)
has been the main driving force for web application
development, the types and number of web services grow
rapidly. Thus, finding appropriate services quickly and
accurately is considered as hard as searching a needle in
the haystack (Garofalakis et al., 2004). Many efforts have
been made to settle this problem and applying service
clustering techmque for service discovering 13 a
mainstream 1dea in recent years. Generally speaking, the
process of clustering services starts from parsing web
service describing documents (such as WSDL) and
extracting features and then groups web services mto
functionality-based clusters according to a particular
methods for clustering (Elgazzar et al., 2010).

The main method for service clustering focuses on
the similarity among services. Text mining methods are
applied to extract features from WSDL in order to group
services (Liu and Wong, 2009). And the frequency of
keywords that appear in WSDL 15 used to measwe the
similarity (Nayak and Lee, 2007). To cluster services,
scholars propose a method that combines the techniques
of Hyperclique Paterns Disovery and LSI (Latent
Semantic Indexing) (Plebam and Pernici, 2009). In order to
unprove the cohesiveness of the service cluster, someone
considers not only the functions of services but also the
process inside services. For a given service request, a
service matchmaker compares the functionality and
process consistency among the candidate services, which
can improve the accuracy of matchnmiaking (Sun and Tiang,
2008). However, this study uses the method that

comparing request with services m service clusters one
by one, which ignores the similarity of services in a
particular service cluster.

Overall, the present cluster-based works largely focus
on the methods for clustering web services, but neglect a
further study on the description and formalization of
service clusters after clustering. In addition, these works
do not specify clearly the process for service discovery.

Considering the similarity of services included m a
service cluster, a model of Concept Position Vector (CPV)
15 provided to refine service clusters. It can largely
improve the time efficiency of service discovery through
clustering services and refine service clusters prior to
matching services with a given service request. The
overview of owr study can be seen through Fig. 1.

This study firstly parsed the WSDL files and
calculated the functional similarity of services with
WordNet, then clustered services into functionally similar
service clusters. Anda CPV model was proposed to refine
service clusters.

Input
Service clustering

Service clustering
refinement (based on

WSDL

concept position vector
Pt position) Enhanced
e ; web services
enera Cluster-based request
tol ;i i q
ontology service discovery
(WordNet) 1
Web
—P|| services
Output _—

Fig. 1: Schematic block diagram of cluster-based service
discovery

Corresponding Author: YongJun Zhang, College of Information Science and Engineering,
Shandeng University of Science and Technology, Qingdao 266590, China

Inform. Techrol. ., 12 (5): 967-974, 2013

BASIC KNOWLEDGE OF WEB SERVICE

According to WSDL documents, a service contains
more than one operation and each operation provides a
function, about 75% W SDL documents contain more than
two operations (Deng et al., 2009). Thus, these operations
should be considered when we cluster services.

BASIC DEFINITION
Definition 1: Web service: A web service 1s a four-tuple:
S = (SID, SName, SF, {Op_})
where, SID is the unique identifier of the service, SName

15 the service name which is often a compound word
composed of several words with figures or identifiers

(such as*-".") according to service producers’ naming
conventions.
SF is the functional description in natural

language provided by service provider when publishing
services. {Opm} is the set of operations in the service. In
other words, 1t 1s the set of the functions that the service
provides. Each operation can be described by S.Op in
Defination?2.

Definition 2: Service operation: An operation in a web
service 1s a three-tuple:

3.0p = (OpID, OpName, {In,, Out})

where, OplD is the unique identifier of the operation,
OpName is the operation name, often a compound word
that is similar to service names, {In,, Out} present the
mterface of service functionality that 1s composed by the
input parameters and output parameters of the operation.
And each parameter can be described by:

S.0p.Iny: (ParaName, type) defines an input parameter
with the name of the parameter and the type
S.0p.Out: (ParaName, type) defines an output
parameter in the same way

SEMANTIC SIMILARITY MEASUREMENT

In this study, we use WordNet (Miller, 1995) to
calculate the semantic similarity between ontology
concepts to group services into functionally similar
clusters. Here, we apply the design of public ontologies
such as WordNet instead of a domam-ontology for

968

service annotation and similarity evaluation. This is
because, on the one hand, different services may come
from different domains; however, no public ontology 1s
available now. On the other hand, WordNet, a natural
language database
psycholinguistic and human lexical items, has enough

semartic combined current
concepts for amotation. Although some efforts on

ontology construction are increasing, such as
Bootstrapping Ontologies for Web Services provided by
(Segev and Sheng, 2012), we do not apply these methods
due to the immaturity.

The factors that influence the semantic similarity
between concepts mainly include: the shortest path
and the depth. We prefer the methods proposed by
(L1 et al. (2003) that consider both the two factors for
semantic similarity computing. The similarity between
two concepts C; and C, is caleulated according to
Eq. 1:

)

o

—c

(1

Sim(C, ;)= % — e
where, len (C, C) presents the shortest path between the
two concepts; h is the depth of the Least Common
Ancestor 1 the ontology hierarchical structure and
o, = = O are the regulating parameters of len(C;, C})and h.
Particularly, Li ef al. (2003) set @ = 0.2, B = 0.6 in which
case that can bring the perfect effect according to their
research.

As shown in Fig. 2, for a fragment of the semantic
hierarchy of WordNet, the similarity between two
concepts (car,bicycle) (denoted by Sim(car,bicycle)) is
considered, and the shortest path between them 1s car-
transportation-bicycle. Thus len(car,bicycle) = 2 and the
Least Common Ancestor 18 Transportation whose depth
in the actual hierarchical structure of WordNet is 11, and
h=11. Therefore:

06*1l _ -06*%11

. . Lnzes €
Sim(ear, bicyele)= ¢ " x Tm————=0.67
e e
Entity
|
M;\hmdise ves ee vy, Transportation
are P . Bicycle

Fig. 2: A fragment of the semantic hierarchy of WordNet

Inform. Techrol. 1., 12 (5): 967-974, 2013

WEB SERVICE CLUSTERING

Process for service clustering

Features mining from web service files: In this study, we
use the tool of WSDLAT developed by TBM that provides
standard WSDL parsing interfaces to parse WSDL files
and mining four types of features, namely, the service
name, the operation name, the input parameters and
output parameters of the operation. These features
represent the functions of the service.

Preprocess for clustering

Tokenization: Due to the naming conventions, the four
types of features we extract from WSDL files mostly are
composed by words, example,
ShoppmgmalMaxpricedigital-videoService, thus name
similarity can be calculated only after a tokenization step

several for

which decomposes a given name into its terms. The set of
terms will be actually compared to obtain the similarity
among names. For this reason, we take the step of
tokenization after feature mining and use blank spaces to
segregate terms in the same set (Table 1).

Stemming: Stemming technology 1s often used in
Information Retrieval (TR), as many English words are
variations of the same lemma. For example, “wheel” is a
lemma for “wheeled”, "wheeling”, "wheeler”. We apply
the Port Stemmer to trip word endings and return lemmas.
For example, “shopping” returns “shop”. Through this
step, inflections of nouns, conjugations of verbs, and
adjectives are recognized, thus can reduce semantic
ambiguity.

Stop list: It 1s also a common technology mn the field of IR.
Applying stop list, we do stop words removing, thus can
filter out terms with less mformation value. For example,
there is a parameter “Lecturer-in-academiaService”, and

after the step of tokenization, we should add the term “in
to stop list, and returns {lecturer academia service}.

Assignment in bipartite graphs of parameters: Generally
speaking, the functional similarity of services relies on
both the name of the services and all their operations;
whereas the valuation of similarity of operations should
take into account both the operation name and all their
parameters. As an operation has more than one input
parameters and output parameters, so we should pare
parameters to realize which 1s the maximumn similarity
between the elements included in the two sets we are
comparing.

In this study, we want to obtain the global maximum
similarity through pairing the elements in the two set, not

969

i'l

4

Fig. 3: Graphical representation of bipartite graphs of
parameter

Table 1: Rules of tokenization

Rules Original term Tokenized version
Rule 1 Personal bicycle Personal bicycle
Rule 2 Shopping mall Shopping mall
Rule 3 Calendar-date Calendar date
Rule 4 4Wheeled car Wheeled car

the local maximum which relies on the order that the
comparisons of elements from the two set occur. For
example, when applying the method of local maximum, the
result of paring illustrated in Fig. 3 i
(=11,1" 3> <2, 2> <31 4>) However, Sim(<il,i'3>) = 0.8,
which 1s less than Sim(<12,1'3>=) =1.0.

Many efforts have been made to solve the problem of
parameter peirmng by applying the algorithms of
assigmment in bipartite graphs. In this study, we design a
method based on this 1dea for solving this problem.

Algorithm 1: Assignment in bipartite graphs of parameters

Input: a set of input parameters from one operation in a service {S.0p,.In}
and another set of input parameters from one operation in another service
{8.0p,.In}, a given thresholdv.

Output: the set of parameter pairs

1: local a similarity values matrix a[|S.Op,,:Inf][|S.Op..In]],

2: Fori-->{S8.0p.In},j-=>{S8.0p.In}

3 alillf] = Sim{<ij=) /4 Sim{<ij>) is calculated according to
formula(1);

4: Picking up the maximum of each row in the matrix, a,..[i][j];

50 I (@ueli][i]>=v) then add a,.[i][j] into MaxSim

6: Else delete the row that a,[i][j] lies in

T /*If there exits more than one elements in the Max8im that come from
the same columnn of the matrix, then changed the value of the one of
lower values into the value of 0, delete it from the MaxSim, then
choose the maxirmun of the row in the matrix again*/

8: For each a,,[i][j] in Max8im

9 Iﬁ(jlarger - amaxlargar[ilanger]ljhrger]):(jsmallar - amaxsmaﬂer[isrnaﬂer]ljsknaﬂer]))

10: amaxsma]ler[i-smalbr] I—_iSmalJBr] = 0;

11: delete 8, guaned boatee | Lsmane] from MaxSim

12: picking up the maximm of the row auanael e | L] 1i€8 0,
repeat 5),6)

13: Chose the elements that corresponding to rows and columns and pair

them, then retum the set of parameter pairs.

Inform. Techrol. ., 12 (5): 967-974, 2013

We can get the number of successfully paired
parameters from Algorithm 1 through [Max Sim|(the length
of MaxSim).

For example, in the matrix described above, if we set
the value of v 1s 0.6, the maximums of each row in the
matrix are a[0][2] = 0.8, a[1][2] = 1.0, a[2][3] = 0.9 but
al0][2], a[1][2] are from the same column(j = 2), and
a[0][2]= a[1][2], so we set a[0][2] = 0, and choose the
maximum from the first row m the matrix agam, that 1s
a[0][1] = 0.6, equals to v, so MaxSin = [0.6,1.0,0.9]. Then
we get the set of parameter pairs {<i 1, 1"2>, 1212
> <3041

Functional similarity of web services
Similarity of the set of input/output parameters: Given
two operations (x and y) from different services, based on
the parameter pairing, we can get the similarity of the set
of inputs (or outputs), which is showed by Formula (2):
Sim (<In,, In=) = num/(| In, | In, |-num) — (2)
where, num 1s the number of successfully paired
parameters. In the previous example:

Sim (<In,, In>) =3/(3+4-3) = 0.75.

And we deal with the outputs in the same way as with
mputs.

Operation similarity function: Operational similarity
relies on three functions: an operational name similarity
Sim (<Name Name ., =), the similarity of input
parameters Sim {<In . In;; >) and the similarity of
output parameters Sim (<Out,,,, Out >, as Formula (3)
shows:

st.opks

.09,

OpSim {(<8,.0p,. 8,.0p,) = cl *Sim (<Name .

*8im (<Ing g, Ing > Moo, *Sim(<Out, .. Out

Name, ., ~)+e,

dopt)

3)

where, w,, 0,, 0, €[0, 1], as weights for operation name,
input parameters and output parameters, in addition,
w tw,tw; = 1. Generally, the selection of the weight
coefficients, to some extent, is a key challenge for relevant
research. It 1s somewhat subjective at present.

Web service similarity function ssim(s.s;): As one
service often contains more than one operation, so we
consider the average of all operational similarity, which 1s
Formula (4):

AvgOpSim (5,5)) = X sim <S,.0py., 5,.0p>n (4)

where, n=min {[S,.0p, |S,.Opy}.

970

The functional similarity of services relies on
two main functions: a service name similarity function
Sim (<Name,, Name ,>) and the average operational
similarity function AvgOpSim(<S.Op,, 8.0p, =). The
weight for service name is the same as operation
name, that 13 w,. Web service similarity functional
similarity, defined by Ssim(s.s), 1s evaluated by

Formula (5):

8sim(si,sj) = @l *Sim(<Name,, Name, >)+(1- ol)*AvgOpSim(s,, 5,)

(5)

Algorithm for service clustering: A bottom-up algorithm
of hierarchical clustering is applied to service clustering
based on semantic similarity.

We firstly create a service cluster and randomly add
one service Su into it with viewing Su as the center of this
cluster. Then we scroll the rest set of services, and select
the ones that satisfy a certamn similarity condition through
calculating the similarity with Su and add them into the
same cluster which Su belongs to. If the similarity cannot
satisfy the conditions, then we build up a new cluster
and add this service in. The above steps repeat until
each of the services can be mapped into a service cluster.
The algorithm for service clustering is described in detail
as Algorithm 2 shows.

Algorithm 2: Service clustering

Tnput: All services in service register, the threshold for service functional
similarity (v).

Output: The set of service clusters Sc. = {SC,, SCy, ..., SCy}

1: Local 8C./o;

2: For each service S, that does not belong to any service cluster, build a
new cluster{S}

30 SCet = SCe {8C,}; /fadd this cluster to SC.y

4. For each service §; that do not belong to any service clusters

S5: 88im (S.,8;) // compare 8, with all the other services that also do not
belong to any clusters

6. If(88im (8,,8;) >=v) then add §to {SC,}

7. Repeat the steps of 2) and 3);

8: Retum Sc.;

SERVICE DISCOVERY BASED ON SERVICE
CLUSTERS

After clustering, the services in the service registry
can be mapped mto different clusters that are loosely-
coupled and highly-cohesive. In order to improve the time
efficiency in service discovery, we take advantage of the
functional similarity of services m the same service
cluster. Therefore we take a further step to refine service
clusters. Then based on clusters, we improve the time
efficiency of service discovery. The whole process of our
study 1s depicted by Fig. 4.

Inform. Techrol. 1., 12 (5): 967-974, 2013

| Features mining |

| Preprocess for clustring |

| Similarity evaluation |

| Similarity evaluation

| Service clustring

| Service clustrer refinement |

| Clustrer-based service discovery +—+ Algorithm 3

Fig. 4: the whole process of service discovery

Service cluster refinement
Concept annotation: To elimmate the semantic ambiguty
of terms included m the service cluster, this study apply
Concept annotation technology Plebam and Permici
(2009) that is annotating each term with a concept from a
public ontology (in this study ,we refer to WordNet as it
is domain-independent and it has enough concepts to
annotate terms parsed from various services).

After the step of concept annotation, the expended
descriptions of services and operations can be got:

5° = (SID, SName, Concept, S5F, {Op,})
3°.0p°= (OpID, OpName, Concept, {In,°, Out})
S°.0p°In, = (ParaName, Concept, type)
3°.0p°.Out®= (ParaName, Concept, type)
Refinement of service clusters

Definition 3: Service cluster: A web service 1s a five-
tuple SC = (SCID, SCF, {3CInP°%, where, {SCOutP*},

{S2.0p

SCID The unique identifier of the service cluster

SCF The functional description in natural
language that 1s added by hand according
to the functional description of the
services included in the cluster

{SCInP°} The concept set of input after concept
annotation for each input

{SCOutP®} : The concept set of output after concept
annotation for each output

{3°.0p%} The set of all operations which also takes

the step of concept annotation included in
the service cluster

971

Definition 4: Concept position vector, CPV: Thereisa
set of concepts {c,, c,, ..., c,}, if ov|, ov,, ..., ov,1s a rank of
position number of elements in this concept set, then we
call ¢V = (cv,0v,,..,ov,) as Concept Position Vector of this
concept set.

We can get Input/Output CPV of service cluster that
correspond to the concept sets of inputs/outputs:

cV(SCInP?) = (cv,,evs,...,cv,), >0 and n = |SCInP?|
cV(SCOutP?) = (ev,cv,,...,07,,), m>0 and m = [SCOutP|

As Input/Output concept set of service cluster is the
union set from Input/Output concept set of all operations
in the service cluster, thus:

¥8c”. OptInS,3SCInP,. c {SCInP}
and <Sc.Op° In,°, SCInP,*">

V5°.0p°.Out’, ISCOutP.’e {SCOutP}
and 5% Op©.Out”, 5" Op°.Out.>

With Input/Output CPV of service cluster, we can get
Input/Output CPV of each operation included m the
service cluster:

cV(SLOpiIng) =k *, 3 SCInP,. € {SCInP*}
and < §° . Op”. In,”, SCINP,.">/|cV(SCInP,.") = k*

eV(S%.0p".0ut?) = 1 *, 3 SCOutP,. “ {SCOUtP?
and < S°. Op.Out’, S°.0p°.Out, || V(SCInP,.5) = 1*

Then we put the results of Input/Output CPV for each
operation into the registry.

For example, there 1s an input concept set of a service
cluster, expressed as (¢, ¢;, ¢;), and ¢V(c,) = 1,eV(c,) =
2,c¢V(c,) = 3; if there is an service operation (5°Op°)
included in this service cluster that comtains two
concepts, ¢, and ¢,. Then the Tnput CPV of S.0p s
¢V(S8"Op,"In%) = (1,3).

Service discovery process
Service request: The goal of service discovery is finding
the suitable services (or more precisely speaking, finding
the suitable service operations) that meet users’
requirem ents.

The formal description of service request is given by
Defimtion 4.

Definition 5: Service request: A web service request 1s a
three-tuple:

R = ({RIn}, {ROut},[r"]

Inform. Techrol. ., 12 (5): 967-974, 2013

where, {Rin} is the set of input parameters of service
request, {ROut} is the set of output parameters of service
request and 1” , an optional parameter, 1s the matching
threshold of services comparing with the request, which
is provided by user ,or a default value provided by the
systerm.

In order to get optimal performance of cluster-based
service discovery, concept annotation methods should be
used to not only services of intra-cluster but the service
request. Thus, we can get the formal semantic description
for the enhanced request: R° = ({RIn"}, {ROut?}, [r’]),
where {RIn‘tis the concept set of mputs; {ROut®} 1is the
outputs concept set.

Algorithm for service discovery: Once the service
request 1s defined, the common method usually takes so
much time in matching it with all of the services in the
registry that it is often inefficiency.

In this study, we do the service clustering and the
refinement of service clusters off-line which does not
increase the time spent on searching in runtime as
Algorithm 3 shows.

Algorithm 3: Service discovery

Tnput: a service request R® and the set of service clusters SCs,;

Output: the set of candidate service-operations that potentially satisfy service
request CandidateOp;

1: Local CandidateInOp = o, CandidateOutOp = o, and CandidateOp=o;

2: Randomly choose a service cluster SCfirom SCs,,

3: /* whether the outputs concept of the request {ROutf} all can be
provided by the outputs concept set of the cluster {SC; CutPe}+/

4: If (Joe{ROut"}, and o& {SC, OutP"}) then go to 2);

5 else { get CPV of request outputs ¢ V(ROut™);

6: for each service S in SC;

7o i (V87 0py” Out) == cV{ROUt))

8: CandidateOutOp = CandidateOutOpu

S Op;

9: TIf (CandidateOutOp=—a) then go to 2);

10:

11: /* whether the inputs concept of the request{RIn°} all can be provided
by the inputs concept set of service {SC; InP* }*/

12: Get CPV of request inputs ¢ FURIFF),

13: for each service S in SC,

14: if ¢V(S".O0p.In®) = ¢ V(RIn®)

15: CandidateInOp = CandidateInOpu
85.0p" ;

16: If (CandidatelnOp=—a) then go to 2);

17: CandidateOp = CandidateOutOpn
CandidateInOp;

18: Retumn CandidateOp.

This algorithm begins with randomly choosing a
service cluster SC, from service clusters set SC,,, , then
from 4 to 10, it matches outputs of this cluster with the
given request and from 12 to 16, it matches the inputs with
the request. Step 5 and 12 are proposed to get CPV of
request outputs/inputs (¢ V(ROut’, ¢V(RIn")). From 6 to &,
1t compares each service-operations in the cluster with
¢V (ROut®),if operations meet the conditions that the CPV

972

of the operation outputs equals to that of request
(in step 7), then it will add the operation to
CandidateOutOp which means the candidate service-
operations that can supply the outputs of the request
(showed in step 8). From 13 to 16, it compares each
service-operations 1n the cluster with ¢V (RIn®). If thus
cluster cannot meet the conditions, it will choose another
cluster (as depicted in step 2). At last, it will return the set
of candidate service-operations in this cluster that
potentially match the request.

EXPERIMENT AND EVALUATION

Data preparation: OWL-TC (http:/projects.semwebc
entral .org/projects/owls-tc) is the OWL-S service retrieval
test collection, and the newest version 1s OWL-TC4 which
we adopt in ow context. Tt provides 1083 Web services
specified with OWL-S covering 9 application domains,
such as food, economy, communication, travel, medical
care, weaponry, education, geography and simulation,
with 42 test queries. Since our method 1s based on parsing
WSDL, the tool OWLS2WSDL 1s used to derive WSDL
from OWL-5 documents. After parsing all these WSDL
files, we get 1075 services, 1075 operations, 1533 input
parameters, 1606 output parameters.

The experiments run on a Windows XP PC with
1.60 GHz processor, including Exlips6.1, WordNet2.1, and
My SQL 5.0.

RESULTS

Threshold for similarity: This phase aims at identifying
for which value of threshold for similarity (defined by v)
to cluster services that can obtain the best performances.
For the sake of simplicity, we randomly select 115 services
to do these experiments in this phase.

We set the similarity threshold to four kinds of cases:
v=0.5,06, 0.7, 08. Inthe case of v = 0.5, we divide the
115 services into 5 service clusters with the number of
services m each cluster is respectively 7, 7, 21, 66, 13. In
the case of v = 0.6, we divide the 115 services into 10
service clusters with the number of services m each
cluster 1s respectively, 7,3,12,13,12, 10, 38,11, 4, 4. In the
case of v = 0.7, there are 10 clusters with the respective
number of services contaiming 2.5,3,10,7.8,39,33,2.6. In the
case of v = 0.8, there are 11 clusters with the respective
number of services 1,6, 2, 2, 3, 10, 8, 3, 35, 23, 22.

We test the time spending on service discovery for
the same request in the four cases, and we do this for 20
times with recording results every time. After figuring up

Inform. Techrol. 1., 12 (5): 967-974, 2013

the average response time of service discovery, we find
that in the case of v = 0.7 that can get better performance
than other cases, as Table 2 shows.

Evaluating the efficiency of service discovery: General
methods for service discovery based on clustering often
compare the request with all of the services in the registry
without taking the functional similarity of service cluster
into account, such as Sun and Jiang (2008) did In
contrast, our method for service discovery based on
refiming services clusters with Concept Position Vector
after clustering.

In this experiment, we carry out 100 times test of
service discovery with OWLS-TC. We specify the
threhold value for similarity as v = 0.7 and the matching
threshold in the request as r* = 0.7. Figure 3 shows the
results of our methods (defined by CPVCluster-SD)
compared with the work of Sun and Tiang (2008) (defined
by GeneralCluster-SD).

From Fig. 5, we can see that our method can reduce
30-60% respond time compared with the general method
for service discovery based on clustering. And, with the
number of service increasing, the respond time using
the General Cluster-SD increases dramatically compared
with using owr method and the better stability of
our method 1s 1illustrated. In other words, our method
can effectively improve time efficiency of service
discovery. In addition, considering the precision/recall,
our method has the same performance with
GeneralCluster-SD.

Table 2: Average response time in different cases of similarity threshold
Threshold for similarity Time of service discovery (msec)

¥v=0.5 290
v=0.6 264
v=0.7 251
v=10.8 261
1400 7@ GeneralCluster

y 1200 4@ CPVCluster

S~

© 2 1000 1

EE

= § 4

i é 800

a,=

83

g2

Z

600
400
200 4
0 T T T T
200 400 600 800

No. of services

1000

Fig. 5: The comparison of respond tune of service
discovery (SD)

973

CONCLUSIONS

In this study, we present an approach for service
discovery based on service clustering and refining service
clusters. All in all, we use WordNet to compute semantic
similarity, and cluster services based on functional
similarity, then refine service clusters with Concept
Position Vector.

In the future, we will focus on service composition
based on service clusters. However, many problems
are needed to be resolved, such as, service quality
problem which we do not considered in this study,
the step of to kenization for combination-terms will
need to optimize, and how to maintain the service
clusters should also be taken into consideration in
the future.

ACEKNOWLEDGMENTS

This work 13 supported by the National Basic
Research Program of China under grant 2010CB328101;
the National Natural Science Foundation of Chma under
grants 61170078 and 61173042; the Doctoral Program of
Higher Education of the Specialized Research Fund of
China under grant 20113718110004; the Scientific and
Technological Developing Program of Shandong Province
of China under grants 2011 GGX10114 and 2012G0020120;
the SDUST Research Fund of China under Grant
2011KYTD102 and the project of Shandong Province
Higher Educational Science and Technology program
under Grant J12LN11.

REFERENCES

Deng, S.,Z. Wu, I. Wu, Y. Liand J. Y, 2009. An efficient
service discovery method and its application. Int.
T. Web Serv. Res., 6: 94-117.

Elgazzar, K., A E. Hassan and P. Martin, 2010. Clustering
WSDL documents to bootstrap the discovery of web
services. Proceedings of the 2010 IEEE International
Conference on Web Services, July 05-10, 2010,
Miami, FL., pp: 147-154.

Garofalakis, J., Y. Panagis, E. Sakkopoulos, and
A, Tsakalidis, 2004, Web service discovery
mechanisms: Looking for a needle in a haystack?
Proceedings of the International Workshop on Web
Engineering, Hypermedia Development and Web
Engineering Principles and Techniques: Put Them 1n
Use, in Conjunction with ACM Hypertext, August 9-
13, 2004, Santa Cruz.

Li, Y., Z.A. Bandar and D. McLean, 2003. An approach for
measuring semantic similarity between words using
multiple information sources. TEEE Trans. Knowledge
Data Eng., 15: 871-882.

Inform. Techrol. ., 12 (5): 967-974, 2013

Liu, W. and W. Wong, 2009, Web service clustering
using text mining techniques. Int. J. Agent-Orient.
Software Eng., 3: 6-26.

Miller, G.A., 1995, WordNet: A lexical database for
English. Commun. ACM, 38: 39-41.

Nayak, R. and B. Lee, 2007. Web service discovery with
additional semantics and clustering. Proceedings of
the IEEE/WIC/ACM International Conference on
Web Intelligence, November 2-5, 2007, Fremont, CA.,
pPp: 555-538.

974

Plebani, P. and B. Pernmici, 2009. URBE: Web service
retrieval based on similarity evaluation. TEEE Trans.
Knowl Data Eng., 21: 1629-1642.

Segev, A. and Q.Z. Sheng, 2012. Bootstrapping
ontologies for web services. TEEE Trans. Serv.
Comput., 5: 33-44.

Sun, P. and C.J. Jiang, 2008. Using service clustering to
facilitate process-oriented semantic web service
discovery. Chinese I. Comput., 31: 1340-1353.

	Copy of 967-974_Page_1
	Copy of 967-974_Page_2
	Copy of 967-974_Page_3
	Copy of 967-974_Page_4
	Copy of 967-974_Page_5
	Copy of 967-974_Page_6
	Copy of 967-974_Page_7
	Copy of 967-974_Page_8
	ITJ.pdf
	Page 1

