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Abstract: This study presents a robust adaptive control strategy which incorporates the Dynamic Equilibrium
State (DES) theory to carmry out balance control for underactuated acrobots with parameter variations and
external disturbances. First, based on the idea of the stable state control of the DES theory, the optimal DES
reference trajectories are planed for the angles of the links. Then, by combining the incremental sliding mode
and fuzzy logic systems, a direct Adaptive Fuzzy Sliding Mode Controller (AFSMC) is designed to track the
desired trajectories. In addition to the stability analysis, the robust performance of the proposed AFSMC
against systerm uncertainties 1s verified via numerical sumulations. At last, compared with sliding mode and fuzzy
control methods, the simulation results show that the proposed method has stronger robustness and adaptive
capacity to uncertainties of system parameters and external disturbances.

Key words: Underactuated acrobots, dynamic equilibrium state, incremental shiding mode, adaptive fuzzy

control, uncertainties

INTRODUCTION

In past decade there has been growmng attention
m  underactuated systems due to ther broad
applications (Sankaranarayanan and Mahndrakar, 2009,
Spong, 1997). These systems are mechamcal control
systems with fewer actuators than degrees of freedom.
The control of underactuated robot mampulators provides
a significant challenge to the robotics engineer and
nenlinear control theory (Berkemeier and Fearing, 1999).
An acrobot 18 a typical example of an underactuated
mechanical system that has attracted a great deal of
attention. The acrobot is a two-link manipulator operating
n a vertical plane. It consists of an actuator at the elbow
but no actuator at the shoulder (Spong, 1995). The control
goal 15 to swing it up from the stable straight-down
equilibrium position to the umnstable straight-up
equilibrium position and balance it there.

Several papers have mvestigated the balance,
swing-up and tracking of the acrobot.
Spong (1995) developed a swing up strategy based on
partial feedback linearization and a Linear Quadratic
Regulator (LQR) balancing controller for the two-link
acrobot  balancing. Brown and Passino (1997)
proposed intelligent control methods for
upswing and balance. Berkemeier and Fearing (1999)

control

several

derived a set of exact trajectories of the nonlinear
equations of motion for the acrobot and presented a
nonlinear control law to track these trajectories.
Wiklendt et al. (2009) addressed a controller which
combined a small network of spiking neurons with Linear
Quadratic Regulator (LQR) control to solve the acrobot
swing-up and balance task. By utilizing neural network
and genetic algorithm, Duong et al. (2009) constructed a
global controller in order to handle both swing-up and
balancing control stages of the acrobot without the need
of different control strategies for the two processes under
limited-torque condition. Lai et al. (2001) addressed a
fuzzy and variable structure control strategy for the
acrobot. The model-free fuzzy controller 1s designed for
the upswing and the model-based T-S fuzzy controller i
designed for balance control. Zhang and Li (2005)
proposed a fuzzy control for the balance control.
Compared with Lai et /. (2001) and Zheng and Iing (2006)
reduced the rule numbers of the fuzzy logic systems.
The goal of Zheng and Jing (2006) was to improve the
discrete-time exponential approximation law. A modified
one is presented and applied to the design of discrete-
time variable structure balance controller for the acrobot.

However, the drawback of these works lies in that
they have less considered practical issues such as the

robustness against parameter uncertamty, unmodeled
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The controller
designed by the ideal model was limited in practice.

dynamics and external disturbance.

Therefore, it 1s indispensable and significant for the
underactuated systems to study the control approaches
which have the stronger robustness and the adaptive
capacity to the system uncertainties.

Considering the parametric perturbations i
length  of the second link

Yazici and Karamancioglu (2005) presented a real-

masses and 2
structured robust stability analysis of acrobot system
with a fixed LQC feedback and modeled the problem as a
real structured singular value model so that the designer
knows in advance that which size of uncertainty does
not harm the achievement of the stabilization objective.
Xin and Kaneda (2001) developed a robust centrol
method for the capture and balance phase of the acrobot.
However, the idea was only treated the speed of the
second link when it rotates across the wvertical as an
uncertainty, neglecting the parameter uncertainties.
Lai et al (2009) addressed a global Hee robust centrol
strategy for the acrobot with centriod uncertainties.

However, the external disturbances have not been

considered in the above literatures. Smith et al. (1997)
proposed a better performing fuzzy controller which was

implemented by a combination of genetic algorithms to
eliminate the effect of external random disturbances on the
acrobot. However, the parameter variations have not been
considered by Smith et al. (1997).

Taking the drawbacks above into consideration, we
propose an Adaptive Fuzzy Sliding-mode Controller
(AFSMC) which that mcorporates the Dynamic
Equilibrium State (DES) theory for the robust balance
control of acrobots, subject to system uncertainties such
as parameter variations and external disturbances. First,
based on the idea of the stable state control of the DES
theory (Wang and Chen, 1999, Wang and Wang, 2006;
Qiuetal., 2011), the optimal DES reference trajectories are
designed for the angles of the links. By combining the
incremental sliding mode and fuzzy logic systems, a direct
AFSMC is designed to track the desired trajectories. The
proposed AFSMC algorithm 1s derived in Lyapunov
stability analysis, so that the system stability can be
guaranteed in the entire close-loop system. The robust
performance and effectiveness of the proposed AFSMC
strategy against system uncertainties is verified via
numerical simulations. At last, compared with incremental
sliding mode and fuzzy control methods, the simulation
results show that the proposed method has stronger
robustness and adaptive capacity to uncertainties of
system parameters and external disturbances.

PROBLEM STATEMENT

The system model of the acrobot 1s shown in Fig. 1.
For the link i(i = 1,2), g;, §, My, 1, 1; and |, denote the angle
of the link, the angular velocity, the nominal mass, the
nominal link length, the length of the centre of mass and
the moment of inertia, respectively. g and u are
gravitational accelerating and the control torque,
respectively. m; = mg+Am; (i = 1, 2) where, Am, is the
uncertain mass of the link; L =1+AL (1 =1, 2), where, Al 1s
the uncertain length from the center of mass to respective
link. d,(t), d,(t Yare external disturbances.

The plant moedel of the acrobot by Spong (1995) 1s
obtained as:

my () +m,(qid, th{g.qtg (g =0
m,, (@4 +m;(q)g,thig.qgHeg(d =1 Y]

where, q=(q,,q,)".

my(q) = m +my{1*+1P,+21 1 cos(q, N+ H,
m(q) = mylg)= m2(12c2+111c2005(q2))+12
my(q) = myl,H,

hiqq) = -my 1,92 q,+g,) sin(g,)

hy(q,q) = m2111c2q125in(q;)
glqg) = -(ml,tm,lgsin(g, }-m,l.gsin(q,tq,)
g -m,l,,gsin(q,+q,)

Let the inertia matrix 1s:

_\my(g) m(g 2
M(q)i{mzl(q) mzz(Q)} @

which 1s symmetric and positive definite.
To simplify 1, we can transform the above system
model mto the following normal form of the underactuated

AY
Acuated joint
O Passive joint

Fig. 1: Model of the acrobot
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systems. Considering the external distances d,(t) and
d,(t), the uncertain dynamic equations are given by:

X=X, X;=f)+b(x)r+dt) (3)
X, =X, X =000+b,(x)t+d, (1)
where, X = [X; X, X; X,] = [q; q, g, ] are state variables, f(x),
b(x), 1 = 1,2) are nonlinear functions. They are

abbreviated as f, and b, in the following description.
Because of mvertibility of M(q), let N = m,;m,;-mn,
My, Py = hytg,, P, =hytg,.

Then:
f, = m,P;-m;P,/N (4
f;=m,P;-m, P /N (5)
b, =m /N ()
b, =-m, /N (N

In order to design a robust adaptive fuzzy controller
for system 3, we have the following assumptions:

Assumption 1: The parameter uncertainties are bounded

Assumption 2: bix and b;x are bounded. There exist
positive constants G, and G,, such that
bx=G>0, bx=G,>0

Assumption 3: b, x and bx are bounded, such that
B, <Gy, [Bx)] <Gy

Assumption 4: The external disturbances are bounded,
such that |d,|<D,, |d,| <D,

DES REFERENCE MODEL

Stability 1s the precondition and the most important
research area of the control system. The -earliest
achievements of the control theory came from the analysis
of stability. The classical stability theory targets at the
free system, discussing the problems in the stability
of the equilibrium when the input is zero. In the recent
years, people pay more and more attention to the
equilibrium state and its stability of the non-free
system (Wang and Chen, 1999; Wang and Wang, 2006;
Qiuet al, 2011). A concept of the Dynamic Equilibrium
State (DES) was proposed by researchers. The equilibrium
state is not the origin or a certain fixed point but the
function of the mput. Affected by the mput, the DES
refers to a state of the equilibrium which changes with the
mput. The theory of the DES claims that what is
controlled directly by the input of the control system is
the DES of the system instead of the state or the output.
The state or the output goes under the constraints of its

structure. If the DES of the system is stable, the state or
the output will automatically track to its operation when
the DES goes with the mput.

The DES steady-state control methods include three
procedures. First, based on the quality index of the
controlled objects, the linear or nonlinear time-invariant
systems with the ideal dynamic properties are designed as
reference models. Second, the state of the model is dealt
with as the DES of the control system. Third, the control
law 13 designed to make the state track to its DES step by
step. After all of these steps are completed, the states
achieve their asymptotical tracking to their dynamic
equilibrium states. The nonlinear system can be gradually
lineralized and finally comes to its stability. The most
significant feature 1s wufied the stability and tracking
problems (Wang and Chen, 1999, Wang and Wang, 2006;
Qiu et al, 2011).

In view of this, linear quadratic optimum control
method 1s utilized to acquire the desired DES reference
trajectories based on the linear model of the acrobot.

Approximating around the upright equilibrium
position (q,,q,) = (0,1), let:

sing =q;, cosq; =1 . g
_ - =12 (®)
{sm(qﬁqj):qﬁqp 99, =0 !

The approximate linearization states equations of the
acrobot in Berkemeier and Fearing (1999) are as follows:

X = Ax+Br, (9
where:
0 0 1 0
m22g17m12g2 (mﬂfﬁ‘llz)gz 00
Ao N N
0 0 01
[hzlél_[ﬁllgz (rhll_thI)gz 00
N N
~ ~ T
B-|0 T2 0 7"‘3‘}
N N
Where:

iy, =iy = m, (152 +hle2)+1;
thy, = my, =m,l% +1,

g =(ml, +m,l +m,l ;g
g, =myle

Designming with weighting matrices Q and R, a LOR
state feedback controller is yielded:
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1, = Kx (10)

Substituting Eq. 10 and 9 and adding input 1, then the
desired DES reference trajectories of the acrobot can be
expressed by the linear reference model as follows:

%= AxAB,T, = %, = (A-BK)x 4B, (11)

where, 1 is assumed to be zero when we deal with only the
stabilization problem.

Equations 11 is considered to be the DES of the
acrobot. The trajectory tracking errors are defined as
e, = XXy, 1 = 1,....,4. The control objective 1s to make full
states 1in 3 track thewr DES reference trajectories m 11.
Finally, the tracking errors asymptotically converge to
zero and the acrobot 1s balanced around the straight-up
equilibrium position.

INCREMENTAL SLIDING MODEL CONTROL

Incremental Sliding Model Control (IMSC) has been
widely applied to the large scale underactuated systems
in recent years (Yi et al., 2005; Hao et al, 2008). The
advantage of IMSC was that it can transfer traditional
high-order sliding model surface into several one-order
sliding mode surface and simplify the complex degree of
the controller. For a class of underactuated systems
which consists of 2n state variables, the controller has the
(2n-1)-layer sliding sufaces.

Define three layers sliding mode surface for the
acrobot 3. Choose ¢, and e, to comstruct the first-layer
swrface:

s, = e/ tcqe, (12)
where, ¢,>0, making polynomial s, Hurwitz stable.
Then use s, and e, to construct the second-layer
surface:
8; =C,8,18, (13)
Similarly, the third-layer surface s, can be written as:
85 =C48418, (14
where, ¢,(i = 2, 3) is a constant:
¢; = Csgnle, 5, NC>0, 1= 2, 3) (15)

sy ={cg +cgu+of) +cf; + e, + iy (16)
—CiXyy —C3¥aq + 6d) +65d,

Let s, the equivalent controller u,, is:

Uy = (6Xgy + 0%y, —of, —if, —¢; —cse, a7

—cyd; —c3d ) /(68 + €38 5)

Using exponential reaching law, then the switching
controller 1s given by:

Uy = (-Nsgn(s;)-ks;)ic g o, (18)

where, k>0, n>c¢,D+c,D;. Then, the total controller 1s
designed as:

U= U, gy (19)

Theorem 1: Consider the acrobot represented by Eq. 3,
neglecting the uncertain parameters Am, Al (1 = 1,2).
Sliding surfaces are designed by 12 and 14 the desired
DES reference trajectories are plammed as Eq. 11. The
control law 1s designed as Eq. 19, then the system is
globally stable and the system states asymptotically track
the desired DES. The tracking errors are umformly
conv erging to zero.

Proof: Define the second Lyapunov function candidate
as:

1

v, =%52i=1,2,3 (20)

s =clel +5 + 20568, (21)
Substituting Eq. 15 mto 21, one can obtam:
s = cjel +5; + 20, |egs |z (22)

Similarly, there is:

52828 (23)

Then:
V,2V,2 V.20 (24)
V, = 5,[-ks, - nsgn(s;y+e,d, +ed; ] 25)

=—ks] *‘53‘(71*(‘51]31 +e; D0

Satistying the sliding mode reaching conditions,
V, is bounded, ie., V,cLe. From Eq. 24, we can know
that V,eLee and V,gLe thus, sgle=(1 = 1,2.3) and
gcLeo(j=1,2,34),1.e, &ELeo, &,6Leo.

Tt is assumed that the DES and their first and second
time derivatives are umformly bounded. We can obtain
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uele. Then, from 3 and 11, we know that é,£1. and
e,cLes, 80, 8,610 (1,2,3). Integrating Eq. 25 with respect
to time, yields:

T
k lim []ss[de < V(0= vy ) < w0 (26)
A)mu

Then s,eL,nLe. From 23 we can know s,cL,NLes,

8,£L,NLee. So, by Barbalat’'s lemma, it can be shown that
lims, =0(i=1,2,3) go. lim € = 0(i=1,2,3,4)
t—se0 ’ ? t—sco

DIRECT ADAPTIVE FUZZY CONTROLLER

Universal approximation of fuzzy logic systems:
Considering the acrobot with the uncertain parameters
and external distwwbances, a fuzzy logic system ug 1s
designed to approximate u,,(x).

To simplify the rules of the number, we define the
input of the fuzzy logic system as X = s,. In this study, the
fuzzy system 13 1nplemented with singleton fuzzfication
and product mference and the defuzafier is executed
by the method of center of gravity. The input and
output relation of the fuzzy system is obtained by
Wang (1997) as:

M
S ¥, 00)
ug (X,0)= 27
Da(xX)
=1

where, M represents the rule number. p¢ is called
Gaussian membership function of fuzzy set F. Cmne can

K4 ]T (28)

where, A, and g;, are adjustable parameters of the Gaussian
membership function.

0=(0'...0" is the optimal parameter vector,
E(X) = [£,(30,....Eu(X0]" is a fuzzy basis vector with the
mput vector X. Then Eq. 27 can be rewritten as follows:

defined as:

Mg (X) = exp {[

u(X.0) = 07EX) (29)

Based on the well-known umversal approximation
property of fuzzy systems (Hao et al., 2008), the optimal
fuzzy approximation uy(X,0") is further designed to
approximate the 1, (x) to an arbitrary accuracy, such that:

u,, = u (X6 = 6 E(X)te (30)

The optimal approximation parameters 6" are defined
in the fuzzy system as follows:

C) =argmin[sup ueq—ufz(X,é)U (31)
Tell \ xeu

Q, = {6/676 <M, M,>01UcR"

where, Q5 and U are bounded compact sets of adjustable
parameters 6 and fuzzy mput vector X.

£ is a optimal approximation error of the fuzzy logic
system. Generally, it i1s assumed that the optimal
approximation error 18 bounded, satisfying |&|<E.

Robust adaptive fuzzy control law: Thus, the actual
control power is given by:

u = ugtu,, = 675X+, (32)

u,,, = -1sgn(s,)-ks; (k, n>0) (33)

‘53‘ . He G+ c3G2)2 [ Dy +oDy *EJ (34)
G +cGy ¢ Gy + 3Gy

The corresponding differences between the optimal
and estimated parameters are defined 6-6"-6, then the
parameter adaptation laws for the fuzzy systems are
chosen as:

8-6- 15,50 (35)

where, v is an adaptation parameter (a positive constant
chosen by the designer).

Remark: The parameter tuning law 35 is modified by the
projection algorithm (Wang, 1997; Park et al., 2008) to
ensure the boundedness of |0 to abound M, as follows:

6= 6= Proj[ —15:5()] (36)
1e.,
e, HéHs M,, or HéH:Me and s,87TE(X) < 0
o O, adst s 0

a2

Theorem 2: Consider the acrobot subject to parameter
variations and external disturbances as in 3 which satisfy
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Assumptions 1-4. The ideal DES reference trajectories are
designed as 11. Tf the AFSMC control law is designed as
(32)-(33) with the adaptation laws showed in Eq. 35, then
the stability of the entire adaptive fuzzy controller system
can be guaranteed The parameter & of the fuzzy logic
system will remain bounded and the tracking errors
asymptotically converge to a neighborhood of zero.

Proof: According to Eq. 30, then one can obtain:

(37)

gz = lA’]ﬁz*“eq =lif;—ugzxe
Because g_§_¢" Eq. 37 can be rewritten as follows:

gz =81500 -5 (3%)

Therefore, Eq. 16 can be rewritten as follows:

§3 =(c181 +c3g2)u+cif) +c3fy +egy +caeq — cyxgr — c3%dq +c1d] +c3d2
T
=(e181 +e322)C AX)—8) +{e181 +e382 gy +opdy +ozdy
(39)

Define the second Lyapunov function candidate as:

1 1:Tx
52+—9T9

I S (40)
2(cygy + cagy) 3 or

V3

Using Eq. 39, the derivative of Eq. 40 with respect to
time can be represented as:

V3 = 28711500 + 8+ sy[-nsents;) - kss] "
ad +ady L2 af+ g2 40

+8 3 2
st +e382 I 7 (qg +eagg)

- ms

Considering assumptions 2 and using Eq. 34 and 35,
we get:

V3 S—ks%—‘53| n—ch1+c3D2 —|53 9511 +<3G22 -3 S—ks%—ﬁ|53‘$0

01+ 102 ' 20 + 3G 2)
(42)
where:
_ 761D1+03D27|53I aGui+e3Ga ., (43)
aG1+e3G2 7 501Gy +e3Ga)?
Table 1: Parameters of the acrobot
Link ii=1,2) m; kg™t Im™! L;m! I kgm™
i=1 1 1 0.5 0.0833
i=2 1 2 1.0 0.3333

From Theorem 1, we can know that ScL (1L _{i=1, 2,
3yand Sl (i =1, 2, 3). Thus, by Barbalat’s lemma, it can
be showed that when t—<, 3,(t)—=0. Namely all the signals
of the closed-loop system are bounded, when t—o,
gt)20(G=1,2,3,4).

As a result, the stability of the entire AFSMC system
can be guaranteed. The effectiveness of the proposed
control scheme can be verified by the following numerical
simulations.

Numerical simulations: For numerical simulations, the
parameters of the acrobot are given in Table 1 (Lai ef af.,
2001).

The DES reference trajectories are chosen as the
following case. Substituting the parameters in Table 1 into
Eq. 9, then the approximate linear reference models can be
obtained as:

0 0 10 0
10.19 -1.57 0 0 -1.12
Ad= ,Bg= (44)
0 0 01
-10.35 612 0 0 2.37

According to desired performance index, a LQR
controller was designed with the following weighting
matrix:

1000 -500 0O 0

0 0 1000 —500
Q= R =1000 {(45)
500 1000 0 0
0 0 -500 1000

yielding the optimal feedback gain matrix:
K =[-252.1801, -101.0324, -108.9445, -51.2710](46)

Substituting Eq. 46 mto 11, one can obtain the DES
reference trajectories. The initial condition of the DES
reference model 1s x5, = [0.05 0 0.05 0]. The mitial
states of the acrobot in Eq. 3are x,=[0.2 0 0.2 0]. The
parameters of the controller are ¢, = 20, ¢, = 3.5, ¢; = 0.8,
k =40, n=0.5. Adaptive parameters are £ = 0.1, v = 10.

For simplicity, the means of the Gaussian functions
are set at -1/6, -m/12, 0, m/6, ©/12 for NB, NS, Z, PS and
PB, respectively and all the standard derivations of the
Gaussian membership functions are set at -n/6 (Wai et al.,
2008). Therefore, the Gaussian membership function of
fuzzy sets can be defined as:

(47)

: 2
Mgi (X) = exp[—[ix - F:S;;)Iuj }(j‘l,ﬁ)
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The Gaussian membership function of X can be

shown as Fig. 2.

In order to verify the robust performance of the

proposed AFSMC law under a wide operating range,
simulations are performed for the actual plant model 3
under the following two cases of the system uncertainty.

Membership function degree

1.0 5 S, /\
0.9 \ / \

| i
0.8 ’ | / \ i
0.7 \ / \(i ;H \ ;] \

0.5

o
=N
i)

0.4
0.3
0.2

0.1

0.0 T T T T T T 1
-0.8

Fig. 2: Gaussian membership function of X

Fig.

0.3 (a)

Refrence

0.2+

0.1

ql(rad )

—

q2(rad )

Time (sec)

Angular velocities 6,

dql (rad sec ')

dq?2 (rad sec™")

-0.5 1

Suppose the maximum parameter perturbation is
+10%. The uncertain mass and the length of the link
2 are Am, = 0.2 (sm) (2mt) and Al, = 0.05 sin (1tt). The
external disturbances are chosen random signals and
signals intensity is four times. The simulation results
are shown in Fig. 3

The uncertain mass and the length of the link 1 are
Am, = 0.2 (sin) (2rt), Al, = 0.2 (sin) (271t). External
disturbances are set to be sine waves, 1.e., d, (t) =d,
(t) = 0.3 (xt). The simulation results are shown in
Fig. 4

From Fig. 3 and 4, it 1s shown that both regulation

and trajectory tracking operations are unified well. Fig. 3

illustrates that the angles 6, and 0, can realize global
asymptotic tracking under the action of control torque in

presence of parameters variation and random external

disturbances. The tracking errors converge to zero at

3 sec. From Fig. 4, it is concluded that the angles 8, and

0,

can rapidly adjust and track the desired trajectories

subject to the different parameters variation and sine

1.07
0.5 1
0.0

S

(b)
i\

y \\

—. e e e e

(d)
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Fig. 4(a-d): Simulation results of the DES tracking in case TT
Angular velocities 6,

external disturbance. The acrobot balances to the
unstable equilibrium point. The simulation results indicate
the effectiveness and robustness of the proposed
controller.

To exhibit the superiority of the proposed AFSMC
method over other control methods
papers, the incremental sliding mode control (ISMC)
as 1 Yietal (2005) and Fuzzy Control (FC) as n study
of Zhang and Ti (2005) are also simulated under the
same simulation conditions. Zhang and Li (2005) used
two nputs and one output to be the fuzzy antecedents.
The rule numbers of the fuzzy systems is 30. The
proposed method uses only the one mput. The rule
mumber of the fuzzy systems is 5. Therefore, using one
fuzzy antecedent only can reduce the computing time and
complexity. Considering the acrobot subject to case IT of
the system uncertainty, the simulation results of the three
methods are shown m Fig. 5. In summary, the
numerical results of the three strategies are presented in
Table 2.

In  previous

{(a) Angle 6,, (b) Angular velocities 8,, (c) Angle 6, and (d)

Table 2: Comparison of the control performance

Maximum Residual swing Tines to
Control Swing tor amplitude stability
method link 1 (rad) (rad) (sec)
SMC 0.58 0.01 8
FC 0.52 0.01 [
AFSMC 0.45 Almost zero 3

In Fig. 5, it 18 clear that the fluctuation of the angles
of SMC and FC become worse than those of AFSMC.
Because of the online tuning ability, the performance of
the proposed AFSMC can be much more enhanced in
comparison with SMC and FC strategies. It can be
deduced that the AFSMC method not only improves the
maximum swing of the two links and residual swing
amplitude and shortens the time to stability. The
proposed AFSMC strategy has more than 22.4% and
13.5% angle-stabilizing improvement than the SMC and
FC methods, respectively. One can also conclude that the
proposed AFSMC has stronger robustness and adaptive
capacity under the situation of parameter variation and
external disturbances.
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Fig. 5(a-e) Simulation results of three control methods in case 1T (a) Angle 6, (b) Angular velocities 6, (¢) Angle 6, (d)

Angular velocities 6, and (e) Control torque
CONCLUSION

This study proposes a robust AFSMC strategy
which incorporates the dynamic equilibrium state (DES)
theory to carry out balance control for the underactuated
acrobot in the presence of parameter variations and
external disturbances. The significant advantage of DES
theory is the unification of regulation and trajectory
tracking. In contrast, it is shown that the proposed

AFSMC approach shows better robust performance and
adaptive capacity under the same system uncertainties in
the balancing and tracking control than SMC and FC
counterpart.
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