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Abstract: This study proposed the implementation of adaptive sliding mode recurrent Gauss basis function
neural network estimation in magnetic bearing system. The magnetic bearing system is very unstable nonlinear
systems, so that the nonlinear controller is suitable to have a good response. In the traditional sliding mode
control, the sign function produces chattering phenomenon and if the sign function is replaced by the
saturation function which makes a steady-state error output. Hence, sliding mode control with neural estimation
was proposed m this paper, in which the neural estimator improves the chattering phenomenon and steady-
state error. This study uses the simple structure single-mput single-output of the recurrent Gauss basis function
neural network which reduces the system computation and has good estimation effect. The lumped bounded
uncertainty E 1s a linear combination of the weights between hidden layer and output layer in which recurrent
(Gauss basis function neural network has better accurate estimation value than the Gauss basis function neural
network. Hence, the output responses in the recurrent Gauss basis function with sliding mode control are better
than the sliding mode control.
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INTRODUCTION

In recent years, magnetic bearing systems (Chen and
Lin, 2011, Bangcheng et al., 2012; Jliancheng et al., 2010;
Bachovchin et @l , 201 2) become attention and a research
topic. The mechanical bearings are indispensable
components of mechanical systems on the traditional
industry, such as convey, robot, transport, etc. However,
the major shortcoming of traditional bearing 1s the friction
loss which need add the lubricating oil usually. The
magnetic systems progress and innovation are obvious in
recent years which the most convement 1s magnetic train.
The magnetic technology alse achieves in the bearings
which the magnetic bearing systems
air. Hence, the rotation of the friction loss 1s reduced
which it can maintain a constant speed under no load
disturbance case.

rotate on the

Sliding mode control with the neural network
estimator to estimate the lumped uncertainty has been
used in many fields (Lin et «f, 2001, 2009, 2010;
Li and Yu, 2010). Lin et al (2001) used the sliding
mode control with a recurrent-fuzzy-neural networlk
observer in permanent magnet synchronous servo motor.
Lmetal (2010) used the complementary sliding mode

control and a recurrent neural network estimator to
estimate a lumped uncertainty on-line in the three-axis
platform. Lin ef al. (2009) used the shiding mode control
with a recurrent Elman neural network estimator to
estimate unknown uncertainty in magnetic levitation
system. Li and Yu (2010) proposed a neural control and
sliding mode control serially for magnetic levitation
systems.

MAGNETIC BEARING SYSTEM CONSTRUCTION
AND SYSTEM MODEL

Magnetic bearing system construction: Figure 1 shows
the magnetic bearing system structure which has upper
and lower two permanent magnets, respectively. The
magnetic bearing can suspension on the air when the
current flows mto electromagnet. When the bearing
position moves on the center which can reduce output
current and power consumption due to the upper and
lower two permanent magnets. The error signal between
command signal and feedback height signal is calculated
by the controller. The controller output voltage signal is
transformed into current signal which sends to the power
amplifier of magnetic bearing system. Hence, the magnetic
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Fig. 1: Magnetic bearing system structure

bearing can suspend on the air which the infrared sensor
sends height voltage signal to the computer in the closed-
loop system. We use the RC servo motor as the load
platform m the experiments.

Dynamic mathematical model of the magnetic bearing:
According to Newton's motion laws, we have

m(% —g)-f, =F +F +F, (D

where, F,, F, are permanent forces from the upper and
lower, respectively. m 1s the mass in bearing, f; 13 the
mterferences, x,, X, and X, are the magnetic bearing
position, velocity and acceleration, respectively. F, is the
sum of magnetic force from the upper and lower
permanent forces.

In the Fig. 2, the electromagnetic force of nonlinear
equation (Schweitzer and Maslen, 2009) can be expressed
as:

F = (iﬂ+ic)2 _ (iu 7ic)2
R T (2a)

=-C.x +Ci,

where, C, 1s the position rigid parameter, C, 1s the current
rigid parameter.
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Fig. 2: Magnetic bearing relationship of current and
position

The total permanent magnet of the bearing can be
expressed by nonlinear equations as:

F+F -1 (x.F+F) (2b)
Substituting Eq. 2a and 2b into 1, we have:

mg =mg—C.x +Ci +£ (x,F+F)+f, (20)
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Therefore, we
Eq 2¢ as:

can write the state equation of

0 1

X, c X,
X, - ¥+§+fF(X1,Fl +E)+Aa 0 X,

0 0
=Y i
m m

where, Aa,, Ab are the parameter variations.

ADAPTIVE SLIDING MODE RECURRENT GAUSS
BASIS FUNCTION NEURAL NETWORK
ESTIMATION ANALYSIS AND DESIGN

Sliding mode control: We can rewrite Eq. 2d as:

X =%,
X, = a,x, thutE (3a)
Where:
a, =;(jz+£+ fr (Xl,F1 + Fz)
m X

b = C/m, E = Aax,tAbutfd/m, is the lumped bounded
uncertainty. We define the height error e(t) = x,x,, where
%, is the command height. We choose the sliding line S(t)
with height error integral

S(H=&(+he(t)+h, j; e(t) dt (3b)

where, h, and h; are positive constants. Define the control
mput as:

ult) =, ()+u,(t) (3c)

where, u_{t) is used to control the overall system behavior
and u,(t) is used to suppress the parameter variations and

reject external disturbances. Define the Lyapunov
candidate function:
v, =15 (3d)
2
Hence,
V, = S(%, —a,x, —bu— E+ he(t)+ he(t) (3e)
We have:
1 .
0, (0= (%~ %, + Be() + () (3D

Substituting (3f) into (3e), We have:
V, =-S(bu, +E) (3g)

Let |[E|<K, the nonlinear input switching control u, can be
expressed as:

u ()= [K—;”]sign(S) (3h)

where, 1>0. Hence, v, <3| which ensures stability and
system 18 convergence. However, it has serious chattering
phenomenon. This paper proposed recurrent Gauss basis
function neural network estimator to estimate the lumped
uncertainty which reduces chattering phenomena.

Recurrent gauss basis function neural network
(RGBFNN) estimation: This study used RGBFNN
structure which has an input layer, seven hidden layer
and an output layer as shown m Fig. 3. The RGBFNN
weights are 1 between input layer and hidden layer. The
w, 18 weight between hidden layer and output layer of ]
nodes. We use the activated nonlinear Gauss function in
this paper. We define:

—(e(t i .
(Pj,k=‘3XP[ (e()+2227k V)} (31)

where, v, 1s the Gauss function vertex, j is the hidden layer
node, k is the sampling time, d, is the Gauss function
width and r; 1s the recurrent weight.

Hence, the output of neural network can be
expressed as:

|Input layerl | Hidden layer | | Output layer

/

|

Fig. 3: The structure of recurrent Gauss basis function
neural network
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7 .
Yo = S wipylet) vy d 5y = Wgeth v (D)
=1

where, W = [w,,..., w4], & (e(t),v.d.0) = [P,....d-],

V= [Vl AT = [y difp and 1 = [, ).

This study wuses the output of RGBFNN to
estimate the lumped uncertainty E. Hence, the Eq. 3
neural network estimator output E can be rewritten
as:

7
V.= 2w g (e(t), v, d,.5)=W"-pe(t), v.d.r) (3k)
pl

Define the estimation error between actual lumped
uncertainty and estimation value as:

E=E-B=WT¢' (xv.d i) Wx.v.d.F)re (3D

where, W* i3 the optimal weight vector of lumped
uncertainty in neural network. v*, d*, r* are the optimal
Gauss function vertex vector, width vector and weight
vector, respectively, in neural network to approach the
lumped uncertainty E. € is the composition estimation
error of RGBFNN between E and W* ™.

We can rewrite Eq. 3/ as:

E=W7Tp+Wp+e (3m)
where, W =W -W,j=¢"—§.

We use the gradient method to calculate estimation
value which can be expressed as:

~ G, Y
P, ' ad’
b= =7 | (V=D ||, @ -d)
P, dy, .
T T
av ad (3n)
%
o
1 |l @ D+ ey =@l v+ gid+ @i+ gy
I,
aI.T

where, ¢, and ¢, are all 7x7 matrices v —v' — v, d—a"—d.,
f=1r -1 and ¢y is the higher-order error in Taylor
expansion.

Substituting Eq. 3n into 3m, we have:

E=WT 5+ W g+re=(W + WG+ Wh+e
=W (§-plv-gid-olt) (30)

+WT ((pf\"H prd+ q)ff)—L

where, 1 =—W" ((piv* + q)Zd* + q)xTr* + ¢y ) - '\”MTq)H _g, 1s total
estimation error m RGBFNN. Therefore, we can redefine
Lyapunov candidate function as:

v, = lo, Lamis Lot Lads L L0070
2 2n, 2n, 2n, 2n, 2n,

(3p)

where, n,.n,,n,n,n,>0, { =L - . Differentiating Eq. 3p,
we have:

V. =S(%,+ax —bu—E+hlé+hZe)—i'\)~VT'\5\f—L'T@
g HU nl

1oaei 1 g 1 s
——d"d-—Ft-—L"L
n2 n3 nd

= S(S'(d+ ax, —bu— WT(p(XJ,%J,EIJ,fJ)+h1é+hze)

} . (g

=S W (p-ol¥, - oid, - ¢l )

S5 W (§-97%, —@1d, - 7% )~ LS—— W W - 7¢
IrlEI Irll
B
n, n, n,
Therefore, the control input can be defined as:
1 .
u:B(Xd—alxl ~E+hé+he +ka+u,) (3r)

The adaptive estimation law can be expressed as:

W=, S(§-9¢ —¢Ib —9fF) (3s)
E=—nSelW (3t)
b=—n,S¢IW (3u)
t=-n,S8¢'W (3v)

L=n,8 (3w)
u =L (3x)
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Substituting Eq. 3r-3x into 3q, we have:
V, = k8 <0 (3y)

We know this system is stable from Lyapunov theory.
Let:

&)=k 8 (32)

Integrating (3z), we have:

[ e@dr=V, (3()) -V, (3(0)) (3z1)
Because V,(3(1)), V,(S(0)) are bounded, hence:
lim [ amdr <o (322)
According Barbalet lemma (Narendra and
Annaswamy, 1988), we have:
lim &)= 0 (323)

When t—<o, then S—0 and height error e(t)—0.

) I{ dt
Hl Sliding function II

o.lf:.
=

command e(t)
()

4

EXPERIMENTAL RESULTS

The block of adaptive sliding mode RGBFNN
estimation is shown in Fig. 4. The magnetic bearing
system total adjustable height 13 5 mm. The controller
parameters and system parameters are
Table 1.

Figure 5 shows the output responses of command
height 2.5 mm for 0<t<5 and the command height is
changed as 2.0 mm at t<5s under external disturbance
0.375 kg is added at t>10 sec. Figure 5a and b show that
RGBFNN has faster response in magnetic bearing system
when command height 1s changed and current
interference is added. Figure 5¢ shows that RGBFNN
estimates the lumped uncertainty on line which has better
response in magnetic bearing system. Figure 5d show that
the RGBFNN sliding mode controller can quickly
converge to the origin.

shown in

Figure 6 shows the output responses of time-varying
command height 2.5+0.2 sin(27t) mm and an external load
0.375 kg is added at t>10 sec. Figure 6a and b, shows that
RGBFNN can faster track sine wave when external load 1s
added at t>10 sec. Tt has better output response than
traditional sliding control. Figure 6¢ shows that the
RGBFNN estimator calculates lumped uncertainty on line.

Adaptive law

Adaptive
lumped
uncertainty
estimation

—>

Robust
compensator

Sliding mode control

Fig. 4: Block of adaptive sliding mode recurrent Gauss basis function neural network estimation
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Fig. 5(a-d): Output responses of command height 2.5 mm at O<t<5 and the command height 1s changed as 2.0 mm at t=5s,
under 0.375 kg 1s added at t=10 sec with sliding mode control and adaptive sliding mode RGBFNN, (a)
Comparison of height output responses, (b) Enlarge comparison of height output responses, (¢) Output
response of RGBFNN F, (d) Phase plane for the error and differential error
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Fig. 6(a-d). Output responses of command height 2.5+0.2sin(27t) mm and an external load 0.375 kg is added at t=10 sec
with sliding mode control and adaptive sliding mode RGBFNN. (a) Comparison of height output responses,
(b) Enlarge comparison of height output responses, (¢) Output respense of RGBFNN E and (d) Phase plane
for the error and differential error
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Table 1: Controller parameters and system parameters

Parameters values Parameters values Parameters  values
hy 100 h, 30 n, 30

ny 0.0001 ny 0.0001 n; 0.0001
n, 20 k, 135 C, 6280.52
fe(x i, F) 1.82 G 3790 m 1.6

Figure 6d show that the error and differential error can
track sine wave to the origin quickly in RGBFNN sliding
mode control.

CONCLUSION

The traditional sliding mode control needs to known
the maximum lumped uncertamty for wt) to overcome
parameter variations or external disturbance in magnetic
bearing system. We get a state equation by using
linearization of the nonlinear bearing system. Hence, the
uncertainties and parameter variations depend on the
operating pomt which the maximum lumped uncertainty 1s
large. It causes the chattering phenomenon 1s serious.

RGBFNN estimator has better output response than
traditional sign function or saturation function in the
sliding mode control. We use Lyapunov function to prove
RFBFNN’s stability. The RGBFNN estimates the lumped
uncertainty online. We use the single-input single output
RGBFNN which reduces the system calculation. Finally,
the experimental results show that the proposed controller
15 robust and has better output response than the
conventional sliding mode control.
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