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Abstract: The literature under random component yield has focused on coordination of supply chain at the

determined price, where decision maker chooses its optimal production quantities. We considered a centralized
system when the price is not determined under both random yield and demand. Type A with perfect quality and
type B with imperfect quality are produced due to the random yield. We prove the unique concavity of expected
profit in centralized system at determmed price. Then dynamic pricing 1s considered and algorithm s put
forward for dynamic pricing. Errors can be sufficiently small as long as some parameters can be set suitably.
Apart from lot sizing and dynamic pricing, we also provide qualitative insights based on numerical illustration

of centralized and decentralized solutions.
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INTRODUCTION

The intense competition in semiconductor and
electronics  industry pose great challenge for
manufacturers to reduce cost. Many manufacturers try to
reduce sales’ representatives and adopt the direct
shipping, such as dell For the manufacturers, the
customers” demand 15 stochastic and price sensitive.
(e.g., purchasing laptops). So, the manufacturers have to
control the order quantity and pricing dynamically to get
maximum profit and ineur mimmum cost.

In recent years, the uncertainty of supply chain
increased significantly due to influence of natural
disasters, strikes, terrorist attacks and political instability
and other factors. Supply chain risk management has
attracted mterest from both researchers and practitioners
in operations management. Chopra and Sodhi (2004)
provided a diverse set of supply disruption examples.
Various operational tools that deal with supply
disruptions  have  been studied:  multisourcing
(Anupindi and Akella, 1993; Wang et al, 2011;
Babich et al, 2007), alternative supply sources and
backup production options  (Serel ef al, 2001;
Kouvelis and Milner, 2002, Babich, 2006), flexibility
(Van Mieghem, 2003; Tomlin and Wang, 2008) and
supplier selection (Deng and Elmaghraby, 2005). A
recent review of supply-risk literature is proposed by
Tang (2006). Generally, after investigation of 800
companies’ disruption cases, Hendricks and Singhal
(2003, 2005a,b) found that firms that experienced supply

glitches suffer from declining operational performance and
eroding shareholder value (e.g., the abnormal return on
stock of such firms is negative 40% over three years).

The issue of linking risk assessment with nisk
mitigation for low-probability high-consequence events
such as disruptions of supplies is discussed by
Klemdorfer and Saad (2005), where a set of 10 principles
15 formulated for specifying sources of risk, assessment
and mitigation of risk.

In addition to lhigh-impact, low-likelihood disruption
risks, supply chams are also vulnerable to lugh-likelihood,
low-impact Operational risks (Oke and Gopalakrishnan,
2010) that may arise from problems in supply and
production process. Though the production is strictly
controlled, yield of the components can be uncertain due
to the characteristics of process engineering or
uncontrolled operations (Maddah et af, 2009
Gurnani, 2005). For example, in the LCD manufacturing
industry, it 1s quite commen to get production yield of
less than 50%. So in these mdustries, the manufacturers
have to face the random yields besides random demand.

Yano and Lee (1995) give through review about
single item single stage, multi item mult stage in the
assembly system with lot sizing. Gumani et al. (2000)
studied a centralized assembly system facing random
demand and random yield due to production yield losses.
They formulate the exact cost functions with target level
of fimished products to assemble and the order quantity
of the components from the suppliers as the decision
variables. Gerchak and Wang (2004) studied coordination
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in decentralized assembly systems having random
demand. But they do not consider dynamic pricing and
random yield Gurnani and Gerchak (2007) studied
coordination in decentralized assembly systems with two
suppliers and one manufacturer under uncertain
component yield and determined demand. They
considered that the component suppliers and
manufacturer choose their production quantities and
order quantities separately based solely on their own
profit structure. Guler and Bilgic (2009) considered a
decentralized assembly system with multi suppliers and
one manufacturer under uncertain yield and demand.
They proposed two combined contract to coordinate the
assembly system. As to dynamic pricing under random
vield, Ii and Zheng (2006) studied the joint inventory
replenishment and pricing problem for production
systems with random demand and yield. Bakal and Akcali
(2006) considered the effects of recovery yield rate on
pricing decisions in reverse supply chains and determined
the optimal acquisition price for the end-of-life products.
Tomlin and Wang (2008) studied the production, pricing,
down conversion and allocation decisions in a two-class,
stochastic-yield co production system. They established
that down conversion will not occur if prices are set
optimally.

To the best of our knowledge, most literature under
random component vield has focused on coordination of
supply chain at determined price (Singh et al, 1990;
Gerchak et al., 1994; Gurnani et al., 1996, Maddah et al.,
2009). Some have studied establishing properties of the
profit function of the chain and finding the optimal order
quantity (Gurmam et al., 2000, Guler and Bilgic, 2009).
Few have concentrated on dynamic pricing under random
vield (Li and Zheng, 2006; Bakal and Akcali, 2006,
Tomlin and Wang, 2008), but they studied different
aspects from ours. Since lot sizing with uncertain yields is
an important area of production/manufacturing systems
(Yano and Lee, 1995), we will consider optimal lot sizing
and dynamic pricing at type A with perfect quality and
type B with imperfect quality under random yield and
demand.

BASIC CENTRALIZED MODEL

Consider a centralized system with a single supplier
and a single retailer who sells one item in one period. The
retailer places an order of size Q) from its supplier. Due to
random yield of the supplier, the retailer receives an
amount of aQof perfect quality (Type A) and (1-¢)Q of
umperfect quality (Type B), where « 13 a random yield rate
with support [0, 1]. These two types of item are price
sensitive and the selling amount v; (p,) is the function of
selling price p(1 = A, B). Assuming the demand 15 random

during the selling period and the demand for item i is
v, (p). &, where & 18 the random variable.

This centralized system’s objective is to maximize the
expected profit from the sales of both Type A and
Type B. They should determine the suitable order
amount of size Q and the unit selling price of different
Type A and B. This paper will first consider an optimal
Q at the determined price p; first and the demand 1s y.¢, for
simplicity, then algorithm will be put forward to price
dynamically to maximize the expected profit. The
parameters are defined as follows:

¢ x; = The yield amount of type i
* ¢ = Unit production cost
s p; = Unitselling price for type i
¢ h; = Unit holding price for type i
» 5, = Unitsalvage cost for type 1
¢+ n = Unit penalty cost for type i
. f(.), F() = Probability density function and

cumulative density function of g, respectively
. g(.), G(.) = Probability density function and
cumulative density function of «, respectively

Then the yield amount of type i is defined as:
X, = 0Q (1)
%5 = {1- )0 (2)

And the basic model of the centralized system’s
profit is given by:

B
IL(Q =X [p, -minGx, y2) — U~ 8) (0Q-¥,8)" 7 - (08, — %] ¢Q
i=h
3

The expected profit is different between expected
sales revenue, mventory holding and shortage cost.
Inventory holding and salvage cost of type A item will
occur when the yield of type A exceeds the random
demand, 1e., ¢Q>y,.£,, equivalently a>y,e.,/Q. Otherwise,
if w<y,e/Q, then the shortage cost will occur. Similarly,
inventory holding and salvage cost of type B item occur
if (1-)g>yg g5, equivalently g<1-yze/Q and the shortage
cost 18 mourred, otherwise. Then the expected profit can
be given as follows:

1

EITLQN= [, [ [Paysta = (b, =5,)(0Q - y,5, ) fa(e, Js(e)dods,

vaEalQ
T Q- (5,5 - QI (5, )e(e)dads, @
T psyats — (g - sl )0 yaes i (es )a(@idude,

L Pl @30 - Talyess - (- @Iy (g e(edads, - <
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While the first term is the condition that random vield of
type A exceeds the random demand for Type A; the
second term shows that random yield of type A is less
than random demand for Type A. And the third term and
forth term are similar to the first term and second term,
respectively for type B. The fifth term is the supplier’s
production cost.

ANALYSIS OF CENTRALIZED MODEL

The expected profit of centralized model 1s a function
of Q when the price of type A and B 1s determined.
Then we have to get the optimal Q¥, namely

Q* = arg max E[I (Q)].

Proposition 1: The expected profit E[I, (Q)]1s
strictly concave in Q. And the optimal order
quantity is the unique solution to the following
equation:

o =l
I v[ww_ag(a)fA (¢, )dode,

Pp T o Thy —sg pepl-reeerd
+iB2 BB B 1- ayglo)f, (e, ddade 5
pA+nA+hA—sAI” I” ( g0 (85} e ( )

_ (pp+m, )N, +ipp +75)-A-p,)—c
Ps+By+hy -5,

Proof: Differentiating E[IT (Q)] with respect to Q:

f’E[“ Q) -1 {jym[p,;y“ (h, - 5, X0Q - v,2, )s(@)dayf, (¢, M5,

+jn {j”’""[ 20Q T, (7,8, — o Qg(odulf, (2, )dz,
s {j‘ " e — (hy — 5y - Q- ¥yt M (6 )y Je(or)det
.

0 %{L%EB,Q {pE (1 - U-)Q - TEB[YBEB - (1 - U~)Q] }g(u')da'}fﬁ (EE )dEB -¢

Where:

0
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Q

then Eq. 515 got.
To prove concavity of E[1I, (Q)], then:

SHIL Q)
aQZ

—(ps + 75 JrhB’SE)_[

(a7 by 5 agledalf, (¢, )de,,

1
0aQ '[Y z4lQ
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The expected profit E[IL, ()] 18 maximized when the
Eq. 5 1s satisfied. As we can see the left tern of Eq. 5 1s
increasing m Q. The best Q* 13 got when the left term
equals the right term.

DYNAMIC PRICING ALGORITHM

Since the expected profit E[II, ()] 1s strictly concave
in Q under determined price of Type A and B, we
can find the best Q to maximize the expected profit
E[IIc (Q)]. Under different price of Type A and B, different
maximized expected profit E[I, (Q)] 1s got The
maximized expected profit E[IT, ()] should be got under
the optimal price of Type A and B. Then algorithm for
dynamic pricing is put forward to get the best price of
Type A and B.

The step of tlus algorithm 1s as follows (Fig. 1).

Step 1: TLetp,=0,Q=(d)
Step2: Letp,=0
Step 3:  Setp, = p.tE, (€, 1is sufficiently small)
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P =0.Q=(

it

£

Pa=Ppatts

Ps=Pytis

~ No
if pa>pu

yes

Get the optimal Q* according to
Eq. 5 and than caculate the expected
profit E[II, (Q)Jaccording to Eq. 4

Dose the expected
profit exceed any
one in

Q

output p,, p,
and Q

Fig. 1: Algorithm process for dynamic pricing

Store and refresh the
E[llc(Q)] in Q

Step 4:  If p.>p,"™= then let py = pet Ep (£ 1s sufficiently
small) and go to step 2; if not , get the optimal
Q* according the Eq. 5 , then calculate the
expected profit B[ 11, (Q)] according to Eq. 4

If the new the expected profit E[II, (Q)] exceeds
the former E[II_ (Q)], store and refresh the E[II,
(Q)] in Q, then go to step 3; if not, return step 3
direct

Output  the best E[II, (Q)]

corresponding p, and pg

Step 5:

Step 6: and the

After the step 6, the best expected profit will be
output and the optimal price of type A and B will be got.
As we can see, that the optimal p*, should be larger than
p*p and the precision of p*, and p*y can be ensured as
long as the £, and £ are sufficiently small.

NUMERICAL ANALYSIS

Here, numerical illustrations of optimal lot-sizing
and dynamic pricing under different £, and £, are
described. We assume that random variable €, and g; of
demand obey the normal distribution with yu, =1, 0, =
0.25 and py = 1, oy = 0.15, respectively. The random
variable & of supply has a umform distribution of yield
taking values in (0, 1]. Then the demand function can

1000 1 —_¢— Q
800 4 Expected profit

600
400

Values

200

T T T T T T T T T T T 1

1.0 1.5 2.0 25 3.0 35 40 45 50 55 6.0 65

1.5 2.0 25 3.0 35 40 45 50 55 6.0 65 7.0
Price

Fig. 2: Optimal expected profit and order quantity (Q)
changing with different price portfolio

8007 ——Eqi1]
—— E[IL]
600 4 —— E[I1,]
400

200 4

Profit

0_

-200

-400 T T T T T T T T T T T 1
1.0 1.5 2.0 25 3.0 35 40 45 50 55 6.0 6.5
Price

Fig. 3: Trend of profit change with price portfolio

be assumed as v(p) = «.p ", where b1. That means
the demand for type A and Type B are both elastic.

According to Eq. 4 and 5, the optimal quantities and
expected centralized supply chain profit are depicted in
Table 1 for 12 cases under determined price.

It can be observed from Table 1 that the ordering
quantities and expected profit are highly sensitive to
price. When the price goes up, the corresponding optimal
ordering quantities increase. But the expected profit of
supply chain mcrease at first and then decrease at later
due to the highly mventory holding and production cost
(Fig. 2).

Table 1 show that under determined price, there exist
the optimal order quantities and expected profit of supply
chain. One might wonder what the optimal price and
expected profit of supply chain are when the price is not
determined. So, the algorithm of section 4 can be
programmed in MATLAB 7. As in this specific case, the
optimal expected profit can be calculated, that 15 677.02
and the precise of expected profit can be estimated. Then
the optimal price for type A and B can be calculated under
different £, and Z, and the comresponding error of
expected profit can be given mn Table 2.
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Table 1: Centralized solution for different cases under determined price

Case Pa Pe h h, S S T Ty c QF E[IL Q%3]
1 1.5 1.0 0.5 0.3 1 0.5 1 0.8 1 375.28 -295.30
2 2.0 1.5 0.5 0.3 1 0.5 1 0.8 1 430.69 -63.59
3 2.5 2.0 0.5 0.3 1 0.5 1 0.8 1 484.16 216.84
4 30 2.5 0.5 0.3 1 0.5 1 0.8 1 498.57 489.71
5 35 30 0.5 0.3 1 0.5 1 0.8 1 518.62 523.85
6 4.0 35 0.5 0.3 1 0.5 1 0.8 1 623.47 637.15
7 4.5 4.0 0.5 0.3 1 0.5 1 0.8 1 684.36 613.93
8 5.0 4.5 0.5 0.3 1 0.5 1 0.8 1 719.92 57246
9 5.5 5.0 0.5 0.3 1 0.5 1 0.8 1 733.55 41217
10 6.0 5.5 0.5 0.3 1 0.5 1 0.8 1 758.62 230.96
11 6.5 6.0 0.5 0.3 1 0.5 1 0.8 1 781.43 76.49
12 7.0 6.5 0.5 0.3 1 0.5 1 0.8 1 809.44 -193.61
Table 2: The optimal price for type A and B under different £, and 5
Case EA B p*s Py Qe E [II*, (Q**)] Error (%)
1 0.1 0.1 3.8 31 520.54 675.74 0.19
2 0.05 0.05 375 315 517.98 659.61 2.57
3 0.001 0.001 3.753 3158 51839 664.38 1.88
4 0.0005 0.0005 3.7525 31585 519.16 671.24 0.85
5 0.00001 0.00001 3.75246 3.15859 520.35 677.13 0.02
CONCLUSION
c 900 . . . ..
= In this study, we considered optimal lot-sizing and
> 600 dynamic pricing for centralized system under random yield
Q . .
s and demand. Due to the random yield Type A with perfect
B 300 quali‘.ty and type B with i.Inperfect.quality are pl."oduced.
s We first establish the basic centralized model with these
g 0 two types under random yield and demand when Type A
2 and Type B are sold at different determined price. Then
& 300 we analyzed this basic centralized model and optimal
75 ¢ centralized expected profit was analyzed when prices of
45 , 1 0 these two types were determined. Later optimal expected
15, s 5 ° 3 profit was considered when the prices of these two types
Pa Ps are not determined and algorithm for dynamic pricing was
put forward.
Fig. 4: Centralized profit changing with the price of Type Seme observations about this optimal lot sizing and
Aand B algorithm are as follows:
From Table 2, as £, and £, become smaller, ¢ The expected profit E[II, (Q)] is strictly concave in Q

the errors also become smaller from the whole view.
So, the result can be drawn that the precise can be
ensured as long as the £, and £ are sufficiently
small. Then the profit changed with the price also is
considered in the Fig. 3, while B [II, (Q)] stands for the
expected profit of the centralized supply chan, E[II,] and
E [IIz] are the expected profit of type A and type B,
respectively.

Figure 4 shows that the expected centralized profit
E[IL,] is changing with price of Type A and B. And our
algorithm can achieve the optimal price of Type A and B,
and the E[IL* (Q**)] by ensuring the £, and &,
sufficiently small.

It 15 strongly encouraged that the authors may use SI
(Tnternational System of Units) units only.

when the prices of these two types are determined.
Sothere exists the unque optimal expected profit E[1T,
(Q)] when the prices of these two types are given
Our algorithm for dynamic pricing is effective and the
error can be decreased when £, and £; go smaller. So
this algorithm for dynamic pricing can help centralized
system to achieve the optimal expected profit E[II,
{(Q)] as long as &, and &, are sufficiently small

From numerical examples, the expected profit curve of
Type A E[Il,] and Type B E[Il.] can be observed
with its corresponding price. But E[IL,] and E[II;]
don’t achieve the maximized value with the same
price. So it’s hard to get the optimal expected profit
E[I, ()]. Our algorithm can help get the optimal
expected profit E[Il,] while the errors can be
controlled sufficiently small
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