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Abstract: We estimated the error of least square regression with data dependent hypothesis and coefficient
regularization algorithms based on general kemel. When the kernel belongs to some kind of Mercer kernel,
under a very mild regularity condition on the regression function, we derive a dimensional-free learning rate

i
m .

Key words: Least square regressions, data dependent hypothesis, coefficient regulanization, Mercer kernel,

learning rate

INTRODUCTION

Kernel-based least regression square learning is a
very popular field i recent years (Vapmk, 1995;
Cucker and Smale, 2001, 2002, De Vito et al., 2005;
Wu et al, 2006, Caponnetto and De Vito, 2007
De Mol et al, 2009; Gnecco and Sanguineti, 2009,
Mairal et al., 2010; Schmit, 1907; Koltchinski 2006,
Aronszajn, 1950). Some mathematical foundations of it
have been established, (Carmeli er al., 2006; Christmann
and Steinwart, 2007, 2008; Cucker and Zhou, 2007
Evgeniou et al., 2000, Hirart-Urruty and Lemarechas,
2001; Sheng et al, 2012a-c; Sheng and Ye, 2011;
Huaisheng and Ye, 2011; Sheng and Xiang, 2011, 2012).
In this study, we study some mathematical aspects of
least square learning algorithms. We consider some error
estimate of least square regression learning with general
kernel and coefficient regularization. Tn particular when
the kernel belongs to some kind of Mercer kernel,
under a very mild regularity condition on the
regression function, we derive a dimensional-free learning
rate m .

Let us formulate the problem of learning in a standard
way. Let XcR?, Yo be Borel sets and let p be a Borel
probability measure on 7, = X>Y. For function f: X-Y
define the error:

B, ()= [(y- ) dp -

For each input xcX and cutput veY, (f(x)-+v) is
the error suffered from the use of { as a model for
the process producing y from x. By integrating over
XxY (wrt p, of course) we average out the error
over all pairs (x; y). Hence the word “error” for

E,(D).

For every xeX, let p{y|x) be the conditional (w.rt. x)
probability measure on Y . Let also p, be the marginal
probability measwre of p on X, i.e. the measure on X
defined by p, (8) = p(n~" (S) where 7: X is the projection.
For every integrable function @: XxY-R a version of
Fubini’s Theorem relates p, p(y|x) and p, as follows:

| #x5)dp = [(] ax y)dpty | x))dpy .
Y XY

This “breaking” of p into the measures p(y |x) and p,
corresponds to looking at X*Y as a product of an input
domain X and an output set Y. In what follows, unless
otherwise specified, integrals are to be understood over

p. ply[x) or p,.
Define f: X-Y by:

£.0= [ ydply | x).xe X

The function f, is called the regression function of p. For

each x<X, £ (x) is the average of the y coordinate of {x} <y

(in topological terms, the average of y on the fiber of x).
It 18 clear that if:

£ =L = {4 =( [ 10 dpy | <)

then it minimizes the error E(f) over all feL., (p,). Thus, in
the sense of error E(.) the regression function £, (x) is the
best to describe the relation between mputs xeX and
outputs yeY.

In most cases, the distribution p(x,y) is unknown and
what one can know 1s a set of samples z = {z}%_, = {(x,
y¥® - €27 which are drawn independently and identically
distributed according to p(xy). Our goal is to find an
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estimator f, on the base of given data z that approximates
f, well with high probability. This is an ill-posed problem
and the regularization techmque 1s needed. In many areas
of machine learning, the following Tikhonov regularization
scheme is commonly used to overcome the ill-posed-ness:

1
£ :=algrpellp{;§(f()&)—y,)2 +2| f||i} M

Usually H 1s taken as a Reproducing Kernel Hilbert
Space (RKHS) induced by a Mercer kernel which is
continuous, symmetric and positive semi-definite on
XX, (Vapnik, 1995; Cucker and Smale, 2001, 2002,
De Vito et al., 2005, Wu et al., 2006, Caponnetto and De
Vito, 2007; De Mol et al., 2009; Gnecco and Sanguineti,
2009). The RKHS H, associated with the kernel K is
defined to be the closure of the linear span of the set of
functions:

K, =K(x,.) xeX}

with the inner product (K. KJux = K(xy). The
reproducing property takes the form:
(F, KJwme = {(x), ¥xe X, feH,. (2)

This kind of kernel scheme has been studied due to
a lot of literatures, c.f. (Vapnik, 1995; Cucker and Smale,
2001; Cucker and Smale, 2002; De Vito et al., 2005,
Wu et al, 2006, Caponnetto and De Vito, 2007
De Mol et al, 2009; Gnecco and Sanguineti, 2009,
Mairal et al., 2010; Schinit, 1907; Koltchinskii, 2006).

In this study, we consider a different kernel
scheme. Let K:30:<3-% be a continuous and bounded
function which is called general kernel. For a given data
Y= {V, Vi, VurcX the data dependent hypothesis
space 1s given by:

HK?:{fm(x)io&JK(x,yj):ot(otl,ot7 ,,,,, am)eiﬁm}

=l

Every hypothesis function is determined by its
coefficients and the penalty i1s mmposed on these
coefficients. Then, there comes the general coefficient
regularized scheme:

= argmind LS RS 3
o, .—argﬂ#l{mg(fm(xl) Y:) +}LQ(&)} ( )

where, (2(c) 1s a positive function on K™
Formulation (3) 1s a data dependent scheme which
has been found many applications in the design of

support vector machines, micro-array analysis and
variable selection (Mairal et al., 2010; Schmit, 1907,
Koltchinsku, 2006; Aronszajn, 1950). We now study a
particular coefficient regularization.

We endow :* with usual inner product, ie., for any
o= (e, 0o, ), b= (b, b, b ) ER" we take:

(a,b), = Ea‘b =a"b

In particular ||a |Z=a"a.
Set:

n
Qo) =m| o|=m}|e, [
i=1

We have the following coefficient regularization with
1,-penalization:

m

u«z:=%,l=arg{ggl{ 2w

—£,(x)) +xm|\u|\§} 4
i=1

Equation 4 1s a strict convex optimization problem
whose solution may be analyzed with tools from convex
analysis (Aronszajn, 1950). Based on this consideration,
we shall give the explicit expression for the solution of
Eq. 4, with which and a inequality for convex functions
show the robustness of the solutions (Lemma 3). Thus,
we will use a new approach to estimate the learning rate
Lol g

For this purpose, we define the integral regularized
risk scheme corresponding to Eq. 4 as:

= ol = argmin{E (£, )+ A | o[} 5)

Then, we have the following error decomposition:

[ o P

o Lo £, Il o (6)

+] fmcm

where the first term of the right hand-side is called
the sample error and the second term is called the
approximation error. So the estimate of learning error id
reduced to those of sample error and approximation error.

In this study, we assume |y|<M almost surely. So
the regression function f, 15 bounded and square
integrable with respect to p,. For the kernel function K,
we only assume it i3 continuous and bounded. We
denote:

k= sup [Kixy)| and |p|:= | y'dp

(%, 7)eXxX
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In study of Gnecco and Sanguineti (2009) the
following results have been obtained:

Theorem 1: Let K(x,y) be a general kemel on X*X, &, and
«® be defined as in Eq. 4-5, respectively. Then, for any
0=<8<1, with confidence 1-8, there holds:

2
6k’ Jipl, log (7)
1, — T Hz,pxiT

M S

and A= —
lpl, m

for m=

Theorem 2: Under the assumption of Theorem 1, for any
0=<d<1, with confidence 1 <8, there holds:

(&)

If,, £ [k, < FR(E, A

2
ek’ flpl, log <
afm

where:

K(f, A)=mf (£, ~£,15,, +Amlo|})

Define the mntegral operator corresponding to K(x,y)
as:

L, (f.x)= J.XK(X,t)f(t)dp(t), xeX,fel,(py)

This operator 1s a compact operator that maps a
Hilbert space L,(p,) to itself.

We assume f(x) = L, (@.x) and @<L, (p,) which
mmplies f, lies i the range of L, Under this
assumption, we obtain the following upper estimate for

K(f,.A).

Theorem 3 (Sheng et al., 2012a): Let K(x, y) be a general
kernel on XX, {(x) = L, (¢.x) with <L, (p,). Then:

s There is a discrete set Y= such that:

A=,
K(f,A)<———" 4 )| g
m

2.px

o  IfX = {x,..x,t<X1s taken from the sample z, then,
for any 8e(0,1), with confidence 1-8, there holds:

1 A=l
K(f, A < a[m“” #ol

where:

A= [ foy)Kx. y¥dp(xxp(y)

The above three Theorems are our motivation of our
present work. In the next section we provide our main
results.

RESULTS

Here, we will show if K(x,y) belongs to some kind of
Mercer kernel the convergence rate for the functional
K(f, A) can be derived. Based on thus result, we will derive
a dimension-free learning rate.

The integral operator:

L.(f,x)= jx K(x f(t)dp(t), xeX.feL,(py)

is a compact operator that maps a Hilbert space L.(p,) to
itself. Then, by the Schmidt expansion (Schmit, 1907,
Carmeli et al., 2006):

K.9-KEn-SA6mhm xyex O

where, (4)}% is a non-increasing sequence of eigenvalues
of Ly and 4,005 forms the corresponding orthonormal
eigenfunctions. The convergence is absolute and uniform
on XxX. We want to find an approximating sequence of
the form:

fm(FPj (x) :é mk(fP)Kw {x), xeX

where, a(f)) = (x,(f,),..., «(f))and provide the estimate
for:

IIT,

o Fuey g, +AM (T3 L
which can be served as a upper estimate for the functional
Kit,. ).

By the Mercer’s theorem (Carmeli et al., 2006) we
know the eigenvalues A4,>0. We assume further that
0<A=1 and the eigenfunctions {9,(0}7%, forms a complete
orthonormal basis of 1., (p,). Moreover, we assume that
|pi(x)] <1, for all i and xeX.

Define «(f) = [, f(helt)d p, () for fel, Then
owr main

results can be stated as the following

theorems:
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Theorem 4: If f_ satisfies:

PRI (10)

thern, there 1s an absclute constant C=0 such that:

K(fp,;\_)g{er 1}32 (11)
m

where:

= |a,(l
e:px(x)EilaI;j)l

1s the VC dimension of the family of real valued functions
{K () teX}.

Theorem 5: If f satisfies (9) then, for a large probability:

c.m 't

If

P fuz HZ.Dx =

To prove Theorem 4, we will exploit the
following known result on error bound for sparse
approximation. To this end, we first recall the
concept of VC dimension. The VC dimension of a family
F = {F,} of real valued functions on a set X is the
maximum number h of pomts (t) m X that can be
separated into two district classes in all 2" possible ways,
by using functions of the form Fyt)-¢, where the
parameters x and ¢ vary in X and %, respectively
(Vapnik, 1995).

Lemma 1 (Christmann and Steinwart, 2007): Let X=R?,
Hel (X)), f be a function on X having the integral
representation f{x) = [(K, ()H(t)dt and h the VC dimension
of the family K (t): teX}. If there exists k>0 such that for
all x and t one has |K, ()| <k, then, for any m, there exist
Vs Viseon YmERXs Cpy G G 3-1,1% and an absolute

constant C such that:
g21<C\|H||1JE (12)
1) m

Now, we are ready to prove Theorem 4.

fo0-10h Sk, )

Proof of theorem 4: The proof of Theorem is based on the
Schmidt expansion. In fact, since 0<i, <1, (9) implies:

2laf) <+
10

and hence:

+oo

£.(x) =2 a(f,)0,(x)

Take:
HE) - g%l(y)
then, by Eq. 9 we know HeC(X) and:
| Ky, () = £,(x)

By Lemma 1, there are Y = {y, v,...., ¥t <X and
¢y, Copeoory €,£1-1,1} and an absolute constant C>0, such
that (12) holds.

Define:

H
oty A e e, e
m
Then:

) — h
H fp - fm(rr) ||2,px = Px (X) ” fp - fn:(fv) Hc(x)S 2kC Py (X) H H H1 Jg

and:

¢]
H(I’(fp)sz J]’E E
Therefore:

Ak*Cp, (X)h
K (£,0) </, - £, |2, +7m]| lf,) o< [%+ x} &

Thus we complete the proof of Theorem 4.
Theorem 5 can be derived easily from Theorem 2
and 4.

Proof of theorem 5: Combimng theorem 2-4, we have:

[E T

2

2 d
Gk -J\P|21055 . 2kCyfpz (0h +42. |8
?\.‘\/E o

Taking »=m ", we get the desired result.

Fmally, we want to point out that the similar rate can
be derived for classification problem. We will study this
problem in the future work.
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