http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 13 (7): 1351-1355, 2014
ISSN 1812-5638 / DOL: 10.3923/1t).2014.1351.1355
© 2014 Asian Network for Scientific Information

A Technique Against Buffer Overflow Attacks for Einbedded
Systemns via., Hardware/Software

"¥Wei Guoheng and *Li Zheng
'School of Computer, Wuhan University, Hubei, China
*Department of Information Security, Naval University of Engineering, Hubei, China

Abstract: Buffer overflow attacks cause serious security problems in embedded systems. The program presents
an integrated software hardware approach to protect against buffer overflow attacks. This technique does not
change the processor core, but instead adds a FPGA module that sits between cache and memory and that is
able to defend return addresses from buffer overflow attacks. The solution exhibits neither the performance
overhead of software solutions nor the CPU redesign costs of hardware solutions. The experimental results

show that this strategy is effective.

Key words: Buffer overflows attack, computer architecture, embedded design

INTRODUCTION

Embedded Systems is the most popular areas
nowadays and the momentum of rapid development has
attracted the attention of the people from all walks.
Embedded systems are application-centric, based on
computer technology. The software and the hardware can
be cut and a dedicated computer system 1s strict
requiremnents for functionality, reliability, cost, size, power
consumption (Zhang, 2008). Embedded system has the
following characteristics, there are strict requirements of
embedded real-time systems, there are very high power
consumption and reliability requirements; there are some
limits by resources and costs in the design process;
there are some limits by the size and weight (Zhao et al.,
2008).

With the widespread use of embedded systems, the
security issues have become increasingly prominent. The
currently embedded systems subject to the following
aspects threat, first, a wide range of software attacks
which depending on the attacker sufficient privileges in
the execution environment, in order to be able to control
and access to sensitive devices and data; the second is
the widespread use of a data structure of predatory
attacks, such as the buffer overflow attacks, third,
someone will put implantation codes into the system,
forth, it is called denial of service attacks (Frank and
Bruno, 2008).

At present, the attacks on the buffer most affected. In
some cases, the data exceeds the buffer storage area
which 1s allocated, because the excessive return address
points to the attacker's malicious code. When the function

tries to returny, they begin to perform code which hackers
write in the wrong return address. If this hazard 1s
reached, the intruder will gain the direct control of the
systermn.

Many experts and scholars carry out a study on how
to protect the embedded system to against buffer
overflow attack. For example, Shao et al. (2006) proposed
a combination of hardware and software technology,
Wan et al. (2011)build a defense mechanism based
on Fine-grained Instruction Flow Monitormg (FIFM).
Du et al. (2006) proposed the establishment of a new
embedded security architecture of network security
devices and mechanisms for multi-level anti-buffer
overflow attacks. Domestic longxin uses a special
hardware mechamsm to limit the value of the stack
segment to solve this problem (Hu and Tang, 2003).

In this program, the means of defense, the use of
software and hardware technology monitor and protect
the role of the function's retwrn address to prevent buffer
overflow attacks. The experimental analysis are verified
and confirmed its effectiveness which 1s based on the
design discussed.

PROGRAM STRUCTURE

The program is a combination of hardware and
software technology to monitor and protect the function's
return address. Due to the mtroduction of the hardware
module, the kemnel of the processor does not need to be
redesigned and it will not affect the performance of the
software of the system. Hven if the memory implanted
attack code, as long as the return address is not tampered
with, then the attack code will not trigger.

Corresponding Author: Wei Gucheng, School of Computer, Wuhan University, Hubei, China
1351

Inform. Technol J., 13 (7): 1351-1355, 2014

At the hardware level, between the cache and main
memory add hardware security module guard. The module
not only can select a programmed logic device which can
mncrease the efficiency of the CPU and can be configured
but also can choose a simple connection between the
CPU and the system bus gateway chip. The program
selected FPGA as the guard module to mcrease the
security module which processor architecture is shown in
Fig. 1.

At the software level, the compiler inserts a new
command before every function call and return
instructions. The new directive is used to complete the
operation about guard interface.

The program flow is as follows. The return address 1s
first copied to the memory stack RA guard and the
memory area can’t be any direct calls for memory access.
Guard stack of RA by the modified compiler 1s responsible
for maintenance and management. New command stack
RA state and the state of the program stack are
synchronization and is independent of the location of the
code and cache strategy. The retwn address will be
stored in the stack RA in every function call; when the
function returns, the guard will have buffer overflows
checked to make sure that the correct return address has
been returned by the processor. Therefore, this program
don’t care about the buffer overflow occurs or not. he
guard maintained as long as the retirn address correctly
and effectively, so the flow of execution of the program 1s
not destroyed.

The program despite an increase in the guard module
and expanded mstruction set, but 1t don’t bring too much
overhead. First, the modification of the source code is
changed at compile tool chain stage before the CALL and
RETS instruction, so the amount of the operation of the
entire program and did not add much. Followed by the
guard module is located between the cache and main
memory. It does not change the overall structure of the
processor and does not affect access to the memory.

Porcess core sl
BUS RA BUS
NN stack 1 N
cp I 4 \ v Main
v Cache memory
core
Control
A Notp-cacheablk access logic
T

Fig. 1: Increased processor architecture of guard module

DESIGN DETAILS

The protection of the retwrn address can be briefly
summarized as two points: First, the return address is
stored 1n the stack RA when function calls; second, stack
RA return accurate address when the function returns.

Therefore, the key of the program 1s that the guard
module must be able to distinguish every function call
and retwn. The compiler adds a memory-mapped
instruction "push guard" before a CALL instruction by
configuring. The function's return address is pushed into
the guard module stack RA. Similarly, the Instruction
"guard attention" will be
RETS mstruction to inform the guard to verify
protection of the buffer. The detailed algorithim of
instruction “push_guard” and “guard_attention” is given
i Fig. 2 and 3, respectively.

The address (RET Addr) mto the guard,
“push_guard” will put the correct return upcoming
RET Addr to be pushed onto the stack RA. After that,
guard detect stack RA boundary and store layer
function’s return address in the main memory. Finally
pop_ret addr load into the processor retwn address
register. About the address pop ret addr discussion will
be given in the following sections.

Guard_attention notify the guard module before the
function retwns and the mstruction requires pointer
register coordinate with the PC and FP. And ready for a
branch mstruction Branch RET Addr, the program waill
jump to the correct return address if the processor
executes the mstruction. The guard module contains the
stack RA which store return address and control logic

mserted inte before each

Push (RET_Addr)
into RA stack

RA stack
is full

RET Addr
register—pop_r
et_addr
1

RET_Addr is stored
in RA stack

Save RA stack
into mem

\ 4

End

Fig. 2: Algorithm flow chart of push_guard

1352

Inform. Technol J., 13 (7): 1351-1355, 2014

Guard
prepares
RET_Addr

req <>
pop_ret_addr

Invalid mem
access (req, PC,
FP)

Data«fetch from
mem(req); supply_to_cpu
(data); req—wait for
cachemiss()

Timeout occurs

RET_Addr<pop N
(Ofrom RA
stack
v Supply_to_cpu
(branch RET_Addr |«¢

) instruction)
req<wait for
cachemiss ()

Restore
RA_stack
from mem

Fig. 3: Algorithm flow chart of gurad attention

unit which is used to verify the address of the nstruction
to determine whether the buffer attacked. When a cache
miss occurs, the processor will be released after the guard
of the memory mstruction request. The new instructions
are executed form of storage mapping. The address of the
non-cacheable is pop ret addr. Tt is triggered guard work
when the processor accesses the address. Follow the
process operation to ensure the mmplementation of the
protection program:

¢+ Call push guard instruction before the function
happen By modifying and the real return address
store in the guard module stack RA

* Select non-cacheable address (pop ret addr) and
writes 1t mto the returns the address of the register.
The address points to the original return address

* Call guard attention notice to the guard ready before
function returns

¢ Within the time threshold, CPU will distribute
pop_ret_addr content request and it will some
missing in the cache(If the valve is over time that will
be thought under attack and branch command is
executed)

* Guard analyzes the request, the branch RET Addr
wstruction will be iyected into the CPU if it

determines that the attack occurred. Jump to RA
maintains the correct address from the stack before
the function returns

EXPERIMENTAL ANALYSIS

In order to verify the effectiveness of the program
and test the system overhead of the tume, Use
simplescalar (Austin ez al., 2002) simulation test kit on
ARM development board do some test. Testing
MiBench (Guthaus et al, 2001) contains six
benchma-rks: bitcount---testing the bit processing
capabilities of processor; cre-cyclic redun-dancy check;
dijkstra---algorithm to find the shortest path between two
nodes n figure; fft-—-transform algorithm for the frequency
domain analysis of the digital signal processing; sha---A
standard hash algorithm in the secure computing;
stringsearch---string search algorithm. Every function call
guard module will detect and prevent, therefore, the
overall system performance overhead largely depends on
the frequency of function calls in the program. The six
benchmark program used in the test function call in each
of 100 clock cycles occur the frequency as that bite, cre,
dikstra, fft, sha and stringsearch 15 0.7, 3.0,0.12,1,0.12, 1,
0.6, 0.5.

1353

Inform. Technol J., 13 (7): 1351-1355, 2014

The overhead P of one function call required is as
follows:

P.=T+T;

Among them, T 1s on behalf of the guard access time
and T, 15 on behalf of the guard of access time to stack
R.. Specific time is determined by the CPU frequency and
the guard module operating frequency and bus access
speed. In general, a T;need for a bus clock and a 5 guard
clock; Ty generally consume a guard clock. A function of
system overhead Py returns as follows:

Py = To+Ty+ T,

And the same time, Ty and T, don’t change and
increase the verification of guard module for the return
address Ty. Ty consumes a guard clock. Therefore, the
umnplementation of the program increase the total overhead
as follows:

P =T+C HNexPe)HN <Py

where, T refer to the consumption of the increased
instruction execution time. C,, refers to cache misses of the
time. N, means umber of function calls. Ny means the
number of function returns.

The test system based on embedded platform, using
the 32 bit microprocessor, the CPU clocked at 400 MHZ,
equipped with FPGA (guard module) operating frequency
of 200 MHz The transmission frequency of the bus and
storage memory access frequencies are 100 MHZ. Nearly
guard access requires two CPU clock, a bus cycle cost 4
CPU clock. Simulation results are shown in Fig. 4 by

<7 o Extra instr executed
O FPGA process
o}
£
g 101
Gt
=
=
=~
o
E
£ 5
5]
cn
<
g
<
0 -
Bite cre dijk fft sha String
search
Test item

Fig. 4: Average overhead of test time

simoutorder simulation of The SimpleScalar simulator. The
average overhead of test time 1s 8%.But CRC 15 a special
case. The function call frequently resulted in about 27%
of the cost of the program and 1t does not have a greater
impact on system performance.

CONCLUSION

In this program, buffer overflow attacks are given and
validated a combination of hardware and software
protection scheme. The program has the following
advantages:

* When hardware modules monitor the buffer attack
protection, there is no need to modify the CPU or the
IsA

s Tt does not take up too much CPU resowrces, because
the return address vernification protection occurs 1n
the guard

¢+ Modify OS Minimally (only call or ret)

» For embedded systems

The tests proved that the combination of hardware
and software buffer-overflow exploit prevention program
is an effective defense mechamsm. However, this article
only discussed in the stack smash attacks in the program.
The next step will be for the rest of the buffer overflow
attacks the optimization and upgrading of the program to
truly improve computer systems, especially embedded
systems against buffer overflow attack capability.

REFERENCES

Austin, T, E. Larson and D. Emst, 2002. SimpleScalar: An
mfrastructure for
Computer, 35: 59-67.

Du, I, I Jin and G. Li, 2006. Protection against buffer
overflow embedded network devices Comput. Eng.
Des., 27: 2918-2921.

Frank, A.S. and Z.5. Bruno, 2008. Embedded system
security. J. Electron. Prod., 5: 111-113.

Guthaus, M.R., I.3. Ringenberg, D. Emst, T.M. Austin,
T. Mudge and R.B. Brown, 2001. MiBench: A free,
commercially representative embedded benchmark
suite. Proceedings of the 4th IEEE Workshop on
Workload Characterization, December 2, 2001,
Austing, TX, USA, pp: 10-22.

Hu, W. and 7. Tang, 2003. Design of processor
architecture of longxing 1. Chinese J. Comput.,
26: 385-396.

computer system modeling.

1354

Inform. Technol J., 13 (7): 1351-1355, 2014

Shao, 7., C.Xue, Q. Zhuge, EH.M. Sha and B. Xiao,
2006. Secwrity protection and checking for
embedded system integration agamst buffer overflow
attacks via hardware/software. IEEE Trans. Comput.,
55: 443-453.

Wan, Y., Z. Liuand W. Cui, 2011. Study of a hardware
defense mechanism to agamst buffer overflow
attacks for embedded systems.
Comput., 28: 135-137.

Microeelectron.

Zhang, S., 2008. Design and Application of Embedded
System. Tsinghua University Press, Beijing, China,
pp: 1-2.

Zhao, F., D. Ma and W. Sun, 2008. Design Examples of
Embedded System Based on FPGA. Xi'an Electronic
and Science University Press, Xi'an, China, pp: 4.

1355

	ITJ.pdf
	Page 1

