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Abstract: The issue of modeling and ¢-stability for Networked Control Systems (NCSs) based on spectra
methodology 1s researched. The challenging problem of network delays, which do not only degrade the
performance of a networl-based control system, but also can destabilize the system, is considered. The overall
mathematic model of NCSs with output feedback 1s derived. By using the spectra method and Lyapunov theory,

the imposed ¢-asymptotic stability condition 1s presented. In order to guarantee the performance of system n

the presence of commumnication constraints, the maximum allowable delay i1s obtained. The efficacy and
feasibility of the proposed methods is shown by presenting simulation results.
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INTRODUCTION

Since the 1990s of the 20th century, Networked
Control Systems (NCSs) have been one of the important
research areas in academia (Gupta and Chow, 2010),
because there are many advantages, such as low cost,
high reliability, ease installation and maintenance and so
on (Hespanha et af., 2007, Wang and Liu, 2008). However,
the presence of communication constraints, such as time
delay and data dropout, can degrade a system's
performance and even cause system  instability
(Yang et al., 2010). Recently, many researchers have
studied the problems with the effects of time-delay and
packet dropout teken into accoumt in the existing literature
(Yue et al., 2004). It is well known that time-delay is the
major factor, which can not only degrade the dynamic
performance of the system, but also can destabilize the
system (Luan et af., 2011).

Luo et al (2008) investigated the stability condition
of a class of linear MIMO NCSs with multi-delays by
using the 2nd Lyapunov method Wei and Fei (2012)
proposed the asymptotical stability sufficient condition
for a continuous-time MIMO NCSs with random
communication network-induced delays based on
Lyapunov stability theory. Huang et al. (2010) researched
the robust stabilization and controller design problem for
uncertain NCSs with short time delays. By using the
unpulsive stochastic system theory with delay, they
obtained the sufficient asymptotical stability condition
and y-suboptimal control laws (Huang et al, 2010).
Hu et al. (2013) also researched the robust stabilization for
a class of nonlinear NCSs by using Takagi-Sugeno (T-S)
fuzzy models.

As seen above, the stability analysis methods
presented above are wusually based on Lyapunov
theory. In order to reduce the conservativeness, the
spectra method is used to obtain the asymptotic stability
criterion in this study. The sufficient condition for
convergence is derived. In addition, the maximum
allowable transfer interval is used in its place to ensure
absolute stability of NCSs. The imposed ¢-stabilization 1s
preserved.

SYSTEM MODEL

The block diagram of general NCSs is depicted in
Fig. 1 (Wei and Fe1, 2008). The plant mputs and outputs
are comnected to a communication network through
sensors and actuators.

In Fig. 1, the sensor nodes will measure some
physical characteristics of the plant and transmit it to the
controller via the commumication network. The actuator

Plant
x,(1) = Ax(D=B,u,(t)
{yp(t) =Cx,0

Actuators

Sensors

7,.(G=1,2,..M)
Communication network
7.G=1,2,..,R)

Controller

X0 = Ax (=B
y(®) = Cx(t-1)Du, (t-1))

Fig. 1: Structure of NCSs based on output feedback
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nodes read data from the communication network and
translate it into actions affecting physical characteristic of
the plant. And there are n, states x, M mnputs u, and R
outputs y, in the plant model and n, states x, R inputs u,
and M outputs vy, in the controller dynamics model. Using
T.(=1,2,.,R)and v, (i= 1, 2,..., M) to represent the
sensor-to-controller and controller-to-actuator delays,
respectively.

Consider continuous-time model of the plant given
by the following Eq. 1:

{%®:%&®+m%® (1)
¥, ()= G, (1)

And the controller is described by:

{Xc(t) = Ax. (1) + B () (2)
¥el(t) = Cox.(t - T.) + Deute (t - 7.)

where, A, A, B, B, C,, C, D, are known constant real
matrices with proper dimensions, T, is the calculation
delay of controller.

For the sake of technical simplification, without loss
of generality, the assumptions are given as follows
(Polushin et al., 2009, Schenato, 2008; T.i et al, 2011,
Peng et al., 2011):

¢ Allthe sensor nodes are time-driven and the time gas
among the sensors' nodes can be neglected, the
controller nodes and the actuator nodes are
event-driven

¢ The data is transmitted with multi-data packet
through the communication network at every
sampling period

By using output feedback, u, and u, are delayed
version of y, and y,, respectively, then the formula is
shown as follows:

ui(t)=yh(t—tk) 3)
ui(t)=yi(t-t.)

According to Eq. 3, multi-variable NCSs can be
written as the following equivalent form:

%, ()= A,x, (1) +B,u, (1)

M
= APXP n+ Z BpF:Xc (t- Tt:a - Tc)
i=1

+§:inthp(t— -t 1)
CnE @)
£ (t)=Ax (t)+Bu.(t)

=A% (t)+B, E: Ex,(t—7, )}

)
=Ax(+Y BEX (t-1,)
i=l

where, column matrix:

0 Ry 0 Mxn, 0 Macn,
E;=|0| ,E=|0]| .Gy=| 0

ol c D'E,

0 0 0

By using augmented state vector x(f) = [x/(t)
xt)]"eR*™, the Eq. 5 is obtained:

A D Ef 0 0
x(t):[op A}XUHZ{B E O}K(t—rgc)

(0 BE ;
+ZL} 8 }i(t—‘tm—‘tc)

i=1

ol e T

=11

R M .
= Ax(D+Y Ax(t -+ Bx(t-T)
= i=l

M R
+ZZ Cyx(t—-13)

i=l j=l

T% = Tét: le = Tl:a + TC: ‘E13‘J = Tlca + Tét + TC

For brevity of discussion, rearranging Eq. 5, the
general NCSs model with time-delays can be rewritten mto
Eq. &

ﬂﬂﬂh@+i&ﬂhq) (&)

i=1

With these models, the stability sufficient condition
based on spectra method is proposed.

STABILITY STUDIES

Before the development of the main results, the
following lemmas will be used.

Lemma 1 (Wang and Wang, 1996): Given any complex
matrix A-B and real matrix V with proper dimensions, if
|A| <V, then:

p(A) < p|A] = p(V) (7a)
p(AB) = p|AB| = p(A||B]) = p(VB] (7b)
if p(A)<1, then det‘I + A| =0 (7c)
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p(A+B)<p|A+B|<p(al+[B)<p(v+[B) T

where, spectral radius:

ple) =, fmaf AATA)

In the followmg, the sufficient condition for
convergence is given:

¢ Theorem 1: Given positive constant delays T
(0=<t2t,1=1,..., N), then the closed-loop NCSs
(6) 1s ¢-umformly asymptotical stable 1f in Eq. 8 and
in Eq. ¢ hold:

Re A(A+aD)<0 (&)
flreefioe]s o

Proof: Construct characteristic equation the general NCSs
model (6) 13 presented as follows (Zhou and Su, 2009):

f(s)—det(sI—A—iAles“}—O (10)

o
Set § 13 the characteristic roots, then system (6) 18

¢-uniformly asymptotical stable only 1f Re (5-+¢) hold.
Now, using linear transform:

st =39 (I
Rearranging Eq. 11, there is:
s=08-¢ (12)

Now, using Eq. 12 to simplify and rearrange (10), the
following Eq. 13 can be obtained:

£(5) = det[(a—a)I—A—iAie’(é’“)‘*J:o (13

Then, system (6) 18 g-umformly asymptotical stable
only if in Eq. 14 or in Eq. 15 hold:

Re(8)< 0 (14)

(15)

H
det[(ﬁ— a)T-A 7ZA,e‘(5‘“ﬁ’J >0

i=1

Rearranging Eq. 13, the following equation can be
obtaned:

£t 1 () T e
:det(SI*(A‘FGI)) (16)
wdet [I - [31 —(a+ M)]_IZN:AXE’M‘e“]: 0

Hence, if Re A(A+al)<0, then Re (d)=0 and |det
(OI-(A+al) >0

H
det[I— [3I-(A+ od)]" ZAie’“e“J >0 Re(d)z0
i=1

58

g

—6t|dt Z|A &

N a7
“p [[EI— (a+an)]’ gAle’ﬁ“e““J <1 Re(d)z0
Then, using the Lemma 1, there 1s:
p[[alf(A+m)]’léA)e‘éﬁe“’ﬂj
_ ,—{ﬁ e(w)te—adthN: A)e"”‘e““}
{[ dare ’i“|dtJZ|A J (18)
(e

)

]
Jer
p{ ﬂe“ﬂ”dt Z|A &

)

So, the inequality (17) holds only if inequality (19)
holds, then
stable:

system (6) 15 g-umformly asymptotical

i (A+ol)t
o Je

The proof of Theorem 1 is completed.

dt}[lziz ‘Aiemﬂ<1 Re(3)20 (19)

In order to simplify the calculation of mequality (19),
the matrix (A+el) can be turmed into Jordan canonical
form by using nonsingular transformation matrix P, that
15!

P(A+al)P™ =3, (20)

Hence, Eq. 16 can be rearranged as follows

(Zhou and Su, 2009):

£(3) = det(3I-T,)

w 21
xdet[I j eMe "S"dtZPA eHehHpT ]

o
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Then, Eq. 18 can be rewritten into as follows:

p[oj ej“‘e"s‘dti PA)e'M‘em‘P"J
5 =1
<ol 5P
o Jrlagenee ]
e
o
{
ul

=p| [ J")‘dtz\PA e”P'IU

(22)

p [Re ]Z|PAe“P U

So, the following corollary is given:

¢ Corollary 1: Given positive constant delays T
(O<t2t, 1 = 1., N) and the nonsingular
transformation matrix P (P(A+al)P™" = j,), then the
closed-loop NCSs (6) 18 g-uniformly asymptotical
stable if in Eq. 23 and in Eq. 24 hold:

Re A(A+a)<0 (23)

p[— [Re(1,)]" é|PA)e”P“U <1 (24)

SIMULATION RESULTS

Here, the effectiveness of the proposed c-uniformly
delay-dependent asymptotical stability of NCSs is
demonstrated by numerical simulations.

Consider the following plant:

{Xp (t)= A x, (1) +Byu, (t)
Yo {t)=Cpxp (1)

[ —6.38 02077 6.715 -5.676
-0.5814 —4.29 -10  0.675
Ap= ;Cp214><4
1.067  4.273 -6.653 5.893
| 0.048 4273 1343 -10.104
[ -10.3 1
-8679 3
B, =
1.136 -3.146
| 1136 2z

For the convenience of investigation, single packet
transmission method is used in order to facilitate the
design and reliability in the experiment. That is, the data
is transmitted with one data packet through the
communication network at every sampling period. By
using the real memory-less state feedback controller is
described as follows:
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Fig. 2(a-b): State trajectories of NCSs with (a) Time-
delay = 1110 ms and (b) Time-delay = 430 ms

Ut = -KX(1)

0.27974 0.030293 -0.15587 0.12142
T-013413 029533 -0.71371 -1.031

Then, the parameter A, in system (6) is obtained:

0.42226  0.60735 -0.89177 2.2816
0.64517 1.1439 0.78833  4.1468
" —0.45375 -096353 -2.0683 -3.3815
0.23648  0.55625 1.6045 1.9241

By Corollary 1 i the study, the Maximum Allowable
Transfer Interval (MATI) that guarantees the stability of
system is T,,=1110ms with e = 0.1, 1., = 430 msec
with ¢ = 0.2. However, by using the Thecrem 1 in
reference Weir and Fei (2008), the maximum value of
T4 msec. Therefore, the spectra method introduced in
Theorem 1 or References 1 improves the result of
reference Wei and Fei (2008) and has less conservation.
Choosing the initial state as (x, = [0, 1, -1, 0.5], the
simulation results are shown in the following Fig. 2.

The system state trajectories of the multi-variable
NCSs are illustrated in Fig. 2a-b, which shows this system
1s asymptotical stability. The dynamical behavior of the
NCSs 1s converging to zero in less time. But the system
oscillation when time delay is 430 msec Fig. 2b is smaller
than © = 1110 msec Fig. 2a. On the other hand, by
simulating the plant, the results are better than the ones
that the theorem 1 in reference Wei and Fei (2008) can
provide. This 1s because that the proposed method in this
study can reduce the conservation and brings more
freedom in deriving the delay constraint.

CONCLUSION

In this study, a method of analysis the asymptotical
a-stability sufficient condition for networked control
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systems (NCSs) with random communication time-delays
has been proposed. By usmg the spectra method, the
imposed o-stability condition and the maximum
allowable delay condition for systems is presented, which
guarantee performance and much less conservative result
of the NCSs in the presence of communication
constraints.

However, the proposed method 15 only applicable for
NCSs with multi-delays. How to reduce conservation and
make the results satisfy other NCSs with data packets
lost 1s one of the most mmportant 1ssues to be mvestigated
in the future (Qu et al, 2012; Zhuchkov and Pakshin,
2013).
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