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Abstract: Stability of stochastic systems with Markovian switching has come to play an important role in
information science and engineering. The aim of the study 1s to discuss the stability of the semi-implicit Milstein
scheme of stochastic differential delay equations with Markovian switching. The conditions of the General
Mean-square (GMS) stability and Mean-square (MS) stability of the semi-implicit Milstein scheme are given
by means of the conditions of the analytical solution. The obtained result shows that the numerical scheme
reproduces the stability of the analytical solution to stochastic differential delay equations with Markovian

switching under some conditions.
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INTRODUCTION

Hybrid systems have come to play an important role
in information science, engineering and mechanics
(Mariton, 1990; Huang et al., 2007, Lou and Cui, 2009;
Zhu et al, 2010). One of the important classes of the
hybrid systems is the stochastic differential delay
equations with Markovian switching (SDDFEsMS):

dx(t) = ft, x(t), x(t-1), r(t)dtrg(t, x(t), X(t-1), r(t)dw(t) (1)

where, 1(t), t>0 be a right-continuous Markov chain on the
probability space.

In general, explicit solutions can hardly be obtained
for system (1). Thus, it is necessary to develop
appropriate numerical methods and to study the
properties of these approximate schemes. Stability of
nmumerical Schemes for Stochastic Differential Delay
Equations (SDDEs) is essential to avoid a possible
explosion of numerical solutions. The convergence and
stability properties of the numerical methods for the
stochastic ordinary differential equations have been
studied by many authors (Mao, 2007; Higham et of., 2002;
Hu and Huang, 2011; Zhou and Wu, 2009; Cao et al.,
2004; Wang and Zhang, 2006). Mao and Yuan discussed
systematically the existence and stability of solutions for
stochastic  differential equations with Markovian
switching (Mao and Yuan, 2006). Rathinasamy and
Balachandran (2008) studied the convergence and
stability of the semi-implicit Euler-Maruyama method to

linear SDDHEsMS. Tang et al. (2011) gave the conditions
of stability of analytical solutions and the split-step
backward Euler method to linear delay stochastic integro-
differential equations with Markovian switching. Tn this
study, the linear stochastic differential delay equations
with Markovian switching is studied. The main aim of the
study is to extend to SDDEsMS and study the General
Mean-square (GMS) stability and Mean-square (MS)
stability of the semi-implicit Milstein numerical
approximations.

STABILITY OF ANALYTICAL SOLUTIONS

Throughout this study, let (€, F, {t}t>) be a complete
probability space with a filtration {F.},,,. Moreover, |.| is
the Huclidean norm in R™ and |E| is defined by
IEl=sup [E01 . Tet &(t), te[-t, O be F, measurable and
right-continuous  and  E|E|*<e. Let w(t) be a
one-dimensional Brownian motion defined on the
probability space. Let w(t), 1(t), t=0, be a right-continuous
Markov chain on the probability space taking values in a
finite state space S = {1, 2,--, N} with the generator
I' = (y;)N=N given by:

138+ 0(8),i %],

P{r(t+8) = jjr(t) i}{u 7,54 0(3), 1% |

where, §>0. Here v;201s the transitionrate from 1 to] 1f 1#]
whil e v, =-%%; . The Markov chain r(t) is independent of

i
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the Brownian motion w(t). Tt is well known that almost
every sample path of r(.) 15 a nght-continuous step
function with finite number of simple jumps in any finite
subinterval of R, = [0, +e<).

To analyze the Fuler-Maruyama scheme as well as to
simulate the approximate solution, the following lemma 1s
useful (Mao and Yuan, 2006).

Lemma 1: Given A>0, letr*, fork>0. Then {1, k=1, 2.}
is a discrete Markov chain with the one-step transition
probability matrix:

P(A) = (P,(A)N=N = "

In this study, consider the scalar test equation with
Markovian switching

dx(0) = [alr())e(O+br(O)x(t-T)d e
[e(r{t)x(t+d(r(t)x(t-T)dw(t) (2)

With mitial data x, = £eC([-T, 0]; R) and r{0) = r,€8S,
where a(), b(), c(), d()eER, w(t) is a standard
one-dimensional Brownian motion. The imtial data £ and
ip could be random, but the Markov property ensures that
it is sufficient to consider only the case when both x; and
1, are constants. It 18 known that the existence and
uniqueness of the solutions are ensured under the
local Lipschitz condition and the linear growth condition.
From Mao and Yuan (2006), the following theorem is
obvious.

Theorem 1: If for any ie3, the following inequality:

a(i) <~ | b(i)\—%(\ i) +] d(i) | (3

holds. Then the solution of Eq. 2 is mean-square stable,
that is:

lim E | x(t) =0 4

SEMI-IMPLICIT MILSTEIN SCHEME

Now the adaptation of the semi-implicit Milstein
method to Eq. 2 leads to a numerical scheme of the
following form:

Yot = Yot 0@ )Yl & H(1-00)[a((@", )y, +b(r", ) yn-m]A
He(r Dyt Dy, wlAw, et )y, dir, )y, o1,
+d(r" e Jyn-m+d(r’ )y, 2all: (5)

where O<a <1, A>0 i3 a stepsize which satisfies T = MA for
some positive integer m and t, = nA, %28 vy, is an
approximation to x, if t,>0 then v, = &(t,). Moreover,
Aw, = w(t,.,)-w(t) are mdependent. y, 1s F,, measurable at
the mesh-point t,. Let I, and I, denote the two double
integrals defined, respectively, by:

e o Aw )P A
L= de(t)dw(s):%

1= _[:“ L dw(t - T)dw(s)

The following lemma (Wang and Zhang, 2006) will be
useful to the proof of the main result.

Lemma 2: The double integrals T, and T, satisfy EI, = EI,
=E(II)=0:

EL =FI: = A*/2
NUMERICAL STABILITY ANALYSIS

In this section the stability of the semi-implicit
Milstein mumerical method is given.

Definition 1: Under condition 3, a numerical method 1s
said to be mean-square stable(MS--stable), if there exists
a A;>0 such that the numerical solution sequence v,
produced by this numerical scheme satisfies limE|y, =0,
for every stepsize Ae(0, Ap) with A = t/m, where A >0
dependents on a(.), b(.), c(.), d(.), m 18 an integer.

Definition 2: Under condition 3, a numerical method 1s
said to be general mean-square stable (GMS3--stable), if
any application of the method to problem 2 generates
numerical approximations y, which satisfy lmE|y, =0, for
every stepsize A = t/m and an integer m.

As follows, the main theorem of this study 15 give:

Theorem 2: Assume that for any i€, the inequality (3)
holds and:

[(02 W+ d* @] e@| -+ dei) D*
2
+(a() |+ | b + 2ai) + 2| b)) | +{ e |

+] d@) )71/ aGid | Q)|+ | b ]}

L = max,{

» If L<0, then for every «e[0, 1], the semi-imphcit
Milstein scheme is GMS-stable

If 1.0, then for every ac(l, 1], the semi-implicit
Milstein scheme is GMS-stable; for a[0, L], it is
MS-stable and A, where A' = max{A| A,}
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. . 1
A= max{mlm{—| ) ‘},Az}

A= min{minila(lii)l,mini{(—z:a(i) — 2| b}
= (e} +|d() [¥")/ [(a(iy+] b{D) [

+ (e () + d* @) ei) +di)y) £ 21}

A, =min {(~2a()~ 2| b(D|
— Qo@D ) (@ al)|+| b))
FE + O] o) + )/ D).

Proof: To analyze the stability of the semi-implicit
Milstein scheme, by Lemma 1, the generation of &’ occurs
before computing v,.,, thent’ is known. Since « €s, for
any ies, from (5), then

(1-a(iyad)y,, = (1+ {1 —a)hali) + e()aw, )y,

FUAB(D)Y, 10, + (L - )A(D) +d(D)Aw, )y,
He iy, + o)y, .,
HeDd()y, o + 4" (D)o )L,

Note that Edw, =0EAw =A and Zapxy Jap|(x’+y°),
«,peR. Let Y, =E(y.IY. It holds that:

(1-ara())'Y,,, =PY, +QY,, +RY,, . +GY,

n-Zm

Where:

P=(1+(1-walDA) + ¢ (HA
+ ATcz(i)(Ci (D] e(i)d(i)|

+ {1 - A | b(E)||1+ (1 - a)Aa(i)|
+e(@d(i) | A+ oA | b()||1+ {1 - cAali)],

Q=(1-alA () +d*(Da
A e A
e (ixd (1)+\c(l)d(l)\+7d (e (3)
+] e(Dd(i} +{1— A | b(E}|]1+{1 - ct)Aali}|
+] c(Dd(i)] A+ otA? (1— ab® (i)

R =’ A (i) + a | b{i) | 1+ (1 - c)Aali)]
+aA’(1- )b’ (i)

G =A"d* (DA (D)+ | (D)) / 2

Note that by (3) implies 1-¢a(i)# 0 for any i€5, then:

1
Y“+1Sm(P+Q+R+G) (7)

*max{Y_,Y .Y Y ..}

n-m? Tnelem? Tn-im

By recursive calculation, Y,—0{n—) if:

P+Q+R+G <{l-ahafi))’

which 1s equivalent to:

a* (DA + 2a(i)(1— ehali)) + Ab (i)
2] b} || 1+ (1 - c)Aa(i) | +( c(i)| +| d(i) |)*
(D) + A N e | +] A A /2 <0

If A<min{l/|ali)]}, then:

2a* (i) + 2| b(i) | +{ (D) | +1 A Y
(e @)+ ) €@+ DY 72+ (ali)
+ b()Y - 2ati)a(ir| b s <0.

Since 1+ {1-wsa@®[<1+1-wAlad|
It is obvious that if :

22’ (i) + 2| bii) | +( oi)| +| d{D) ¥
*{cz(dez(i)(\ c(D)] + (DY + ( afi)|
+Ib{i)|)* - 2/a(i)| ( a(i)|+| b} s <0.

Thus Y, ~0(n—eo) From (3), 2ali)+2|b(i)|+( c(i}| +|d{D)]}* <0
then if L<w<l, then the semi-implicit Milstein
method is GMS-stable, as a consequence, when L.<0
and O<¢ <1, the method 1s GMS-stable and if O=<g <1, then
mE|y, =0,A=(0,4,) | thus the method is MS-stable. This
proves the theorem.

CONCLUSION

This study is concerned with stability of the semi-
implicit Milstein scheme of stochastic differential delay
equations with Markovian switching. The GMS-stability
and MS-stability of the semi-implicit Milstein method are
proved. The obtained result shows that the numerical
scheme reproduces the stability of the analytical solution.
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