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Abstract: With the continued development of robotics, robots can perform more and more complex multi-robot
tasks. The subtasks decomposed by multi-robot task may be different significantly and member robots in
system may be varying on capability models. Tt is a challenge to most of task allocation algorithms in this
context. This paper studied ST-MR-IA task allocation algorithm under heterogeneous capabilities condition.
We give the concept of capability heterogeneity;, provide a multi-robot task allocation algorithm, whose
complexity being simplified by distributed computing and pruning strategy. The effectiveness of this new

algorithm 1s verified m practice.
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INTRODUCTION

Cooperative multi-robot systems (MRSs) should
benefit from cooperation to achieve a common goal
optimally (Parker, 2008). The crtical foundation of
cooperation 1s Multi-robot Task Allocation (MRTA), 1.e.,
let tasks be assigned to member robots automatically.
Paper (Gerkey and Mataric, 2004) classified MRTA by
three axes. The simplest SR-ST-TA problem can be solved
in polynomial time. But in most cases MRTA is an
NP-hard problem.

Many achievements have been made in research on
MRTA problem. Subtask allocation optimization is often
overlooked. They presume that either subtasks are similar
or reward of coalition is nothing to do with specific tasks
assignment. However, with the development of robotics,
capability of robots 13 contimiously enhanced. A robot 1s
generally equipped with a variety of sensors and actuator.
So 1t can carry out more and more complex task and work
n different application scenarios. In this context, a task’s
subtasks likely to be different and reward of coalition is
probably related with specific tasks assignment. When
the ability models of robots are different and subtasks are
different, it is a challenge to find the optimal assignment
for most of MRTA algorithms.

This study studied the formation of robot coalition

and ST-MR-IA task allocation algorithm under

heterogeneous capabilities condition. We give the
concept of capability heterogeneity. We provide a
multi-robot task allocation algorithm, whose complexity
being siumplified by distributed computing and pruning
strategy. The effectiveness of this new algorithm is
verified in practice.

RELATIVE WORKS

ALTLIANCE (Parker, 1998) is a representative of the
behavior-based approach which 1s the most researched
in the multi-robot task allocation problems. Another
method modeled allocation decision as a partially
observable Markov process (MA-POMDPS) (Seuken and
Zilberstein, 2008), whose disadvantage 1s lugh time
complexity. Jiang ef al. (2008) proposed a multi-robot task
autonomous allocation method based on ACO algorithm.
Yu et al (2010) presented a centralized planning approach
based on ACO which uses local search strategy to
improve the distributional effects of the ant colony
algorithm.

The most important method in the multi-robot task
allocation is the market-based approach. Dias (2004)
presented a framework for distributed control multi-robot
systems. MURDOCH is a market-based system proposed
by Gerkey and Mataric (2002). Hoplites was proposed by
Kalra ef al. (2005) but there 13 no global optimal search.
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Vig and Adams (2005) described a framework RACHNA.
Vig and Adams (2006) provided a method derived from
multi-agent systems. In this method, the complexity of
distributed computing is O¢|R|") and the complexity of
centralized computing s O(|R[®"). ASyMTRe and
ASyMTRe-D were proposed by Parker and Tang (2006),
ASyMTRe 1s a multi-robot task planmng framework
combined with the market concept, ASyMTRe-D is a
distributed version of ASyMTRe. Their time complexity
is O(|R|"). A dynamic task allocation method was
proposed by Zu (2006) which
communication traffic on the basis of shortening task
completion time.

et al reduced

PROBLEM DEFINITION

We assume that robots can fully communicate with

other, task 1s independent,
assignment and delay of task will caused cost. Task 1s
independent, ie., task should be carried out without

each Instantaneous

dependency on other tasks. But a weakly dependency on
time should be allowed, especially when a multi-robot task
1s decomposed nto several subtasks.

When a task t is fulfilled, the corresponding robot
will receive a utility value u(t)eR,” Meanwhile, every
action a robot executed caused cost c(r, a)eR,” which
depended both on action a and current environment state.
The sum of cost of all of actions executed for the task 1s:

Cir.t)= 3 c(ra) )

acap(t)

where, ap(t) 13 an action plan of robot 1 to complete task
t. Let the utility value u(t) minus the cost C(r, t), we get the
net gain of robot to complete task t:

g(r, O = u(t)-C(r, t) (2)

A robot pursuits to maximize net gain value when
execute task. Value of g(r, t) will be added to g, , which
will be used to compute the performance of robot.

For a specific task, we need an mndex to enable
making comparison of performance between different
multi-robot systems or different operating phase of a same
multi-robot system. This index should be independent of
the number or type of tasks. We choose g, to play this
role, obtained from the following equation:

qir,t)= B (3)
u,

Tt

Where:

u, = i u(t,)

g =3 (i) Ct)

m, 1s number of tasks that have finished, m, 1s number of
all of tasks including finished and executing. It is obvious
that m_<m,.

The optimal task allocation solution J* should be
found to maximize Eq. 3:

W' = agmaxqly, ) 4

It 1s harder to find §* if a task 13 @ multi-robot task,
i.e. this task will be decomposed to several subtasks and
executed by more than one robot. Let tp(t) = <t t,....,
t..> be a task plan. tp(t) is tuple of subtasks of t, where t;
15 subtask of t;, 1<l<v. Any task t, 1f it satisfy [tp(t)|22, 13
a multi-robot task. It 18 more complex for optimal solution
searching when ability models of robots in a system are
different.

CAPACITY HETEROGENEITY OF
MULTI-ROBOT SYSTEM

Let keK be a function of special capacity k. of robot.
K is set of all capacity function of robot:

__ ok 5
" n, (k) +n,(k) ()

where, n,(lkk)eN is times of successful action who using k,,
nfk)eN 1s times of failed action who using k, ke[0,1]. Each
robot reR owns a capacity set:

K, = K, k2, k! (6)
Value of k indicates the reliability of robot. Generally

we just need a Boolean value to represent whether robot
has corresponding capacity. So, k will be obtamned by:

ke K, - {true,1fk(r)>5 (7)

false, else.

Robot r owns capacity k if the value of k(r) 1s greater
than the threshold 8<[0,1].
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Given two robots 1, r; with their capacity set K, and
K, , we call the degree of difference between K, and K,
capacity heterogeneity which can be defined by capacity

redundancy:

2K, MK, |
K, [+[K, |

h(r,r) =1 ®)

where, h(r,, r,)=[0,1].
The capacity heterogeneity of a multi-robot system
is:

2 [RI-1 IR

h(R)=— -
® IRHR—IIE;;(

21K, NK
_ | r,m r,|) (9)

K, [+]K, |

If all of robots in system have same capacity, then
h =0, else if their capacity is different from each other,
thenh = 0.

Heterogeneity provides a measure of functional
diversity within a multi-robot system.

A NEW MRTA ALGORITHM CONSIDERED
HETEROGENEITY

In this section, we will discuss a novel MRTA
algorithm. The organization of multi-robot system is
shown i Fig. 1. There 1s a system agent be responsible
for interactive with coalitions and manager. Some robots
will form a coalition to execute a task. There is a coalition
agent for each coalition. The coalition will be dissolved at
the end of task.

When system agent received a task, it will select a
coalition agent, who can be a robot or a software agent in
network, who will publish the task and form a new
coalition. Algorithm 1 and 2 descript this new multi-robot
task allocation algorithm.

Firstly, at step 1 and 2 of algorithm 1, coalition agent
will decompose the multi-robot task t,, received from
system agent to ST-SR-IA subtasks set t, = tp(t,).
Coalition agent announces subtasks set via the form of
bidding to all member robots in system, including
constraints set of capability %, for each subtask tcT_ and
utility value u(t).

Next, the member robots received will evaluate the
subtasks using algorithm 2. They get the net gain of each
task using Eq. 2, choose the most suitable one. For robot
r, the subtask with the highest net gain value will be
chosen. If there 13 more than one subtask have highest
net gain, choose the one have best performance value q,,
for robot r. If still there 1s more than one suitable subtask,
then select one randomly.

Fig. 1: Organization of UMRS

Algorithmn 1: Procedure of coalition agent task allocation
1 Let T~tpit), round =0

2 Announce (T,,)
3 Wait and receive bids
4 For each tje T,

if only one bidder r then

add (i, r,g, Q) toR,

Remove t; from T,

Else if more than one bidders for t; then

Choose suitable robot using Eq. 2, 10

Addr, g QtoR,

Remove t; from T,

Else

Do nothing,

End if

End for

5 If empty (T,;) or round>length(T,,) then

goto step 7

Else

round++

goto step 2

end if’

6 Using GA to select optimal assignment based on above assignment
result R,

7 End

At step 3 of algorithm 2, robot r submit bidding
information to coalition agent, with information set of
subtasks which can be done by robotr B, = {b,, b,,... b},
where b= (1, t, gir, t,), q. 4).

Coalition agent waits for receiving bidding
information B, from member robots. These bidding
information forms the biddings set B, = {B,, B,,.... B_.}. At
step 4 of algorithm 1, for each subtask t; coalition agent
will screen bidders preliminarily. Tn addition to consider
net gain to complete t,, the performance of robot r for task
and the change of heterogeneity of coalition if 1 joined
into coalition is considered. The lower of heterogeneity
means more redundant capability. When execute task, if
one robot failed, coalition can find another one to take
over its task as great as possible. This evaluation
reference to equation as follow:

T = qir, t)+A(1-h(R)) (10)
where, I is a evaluation of bidder r for task t. A is a

discount factor, Ac[0,1]. The value of A reflect how
important capability heterogeneity m evaluation.
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At step 5 of algorithm 1, coalition agent will obtain a
suboptimal allocation solution R, using Eq. 2, 10. This
solution can be a reference for adjusting individual fitness
in next step. It will need only one loop to get allocation
solution in the best case while |T,|! loops in the worst
case.

Next step, coalition agent need to choose a most
suitable robot for each subtask of T from their candidates
set R, which is a NP hard problem. We try machine
learning methods to obtain the optimal solution. The
Genetic algorithm (GA) 1s one of most suitable methods.

We use symbolic coding method for chromosome
encoding. The length of chromosome for each individual
is |T|. In fact, each individual represents an allocation
solution. The 1ds of genes m a chromosome are
corresponding with subtasks. The values of genes are
corresponding with robots. ReR,. The objective function
18!

FR,.D= 3 gnt)l, (1

yeT reR,

Algorithm 1 computes the fitness of each individual
based on sum of net gains of robots chosen for all
subtasks in set T,. To make individual who represent an
allocation R, better than R have more chance appear in
next generation, we try to adjust its fitness using Eq. 12:

Fitn'(R',, t) = y(R',, 1) (12)
where, v 1s a factor, y21.

Algorithm 2: Procedure of member robot evaluating subtasks
1. Receive (T,,)
2. For each teT,,

Obtain g(r, t)using Eq. 1, 2

Obtain q(r, )

end for

3 Choose the task with the maxirmum g(r, t), submit it with set B, to
task agent

4. End

Whether allowing a robot undertaking more than one
task simultaneously will lead to different allocation
solution and result. If this situation is not allowed, the
fitness of individuals of each generation population
should be adjusted. In practice, when the number of
robots 1s less than the number of subtasks, 1t has to allow
one robot undertaking multiple subtasks. This brings in
new problems. When the member robots bid for subtasks,
they evaluate subtasks based on their current state.
When one robot undertakes multiple subtasks, what it
costs will probably deviate from its original estimation, i.e.
its actual net gain is too little even negative. To take full
advantage of distributed parallel execution of the system,

it is necessary to make subtasks distribute in robots
evenly. We use Eq. 13 achieving this objective:

Fitn' (R, 1) = (& ™)Fitn(R , t) (13)

where, | T,| is the max number of subtasks a robot allowed
to receive.

Fmally,algorithm 1 outputs the best mdividual which
be converted to phenotype, ie., the optimal allocation
result we want. The robot coalition i1s formed based on R..
The coalition agent will notice every robot who belong to
R, If algorithm 1 does not output anything, it means that
the system canmnot complete the task.

EXPERTIMENT AND ANALYSIS

We apply the new MRTA algorithm to transformer
substation mspection robot system. The indoor
inspection experiments were carried out. Tt needs to check
the status of equipment in substation. Compared with the
letting a robot integrates all sensors S needed in
inspection, multi-robot system 18 a better solution.
Member robots in MRS equipped with a subset of S are
easier to design and implementation, making MRS have
adequate redundancy and thus more robust.

Member robots used are shown m Fig. 2. They are
inspection robot cei-I, improved version of Voyager-IT and
III. The capacity set of cei-lis k. = {kpme Kocar Koo Koo
Ky, Keoad. Vovager-IT koo™ Ko Ko Koo Kopio Keto Kogunat
Voyager ILk, 0. = Koo Koot Koo Ko Koo Kogua} . Where,
k. 18 ability of movement, k, is ability of localization, k,;
1s ability of object detection, k., 1s ability of spark
detection, k; is ability of thermal Tmaging, k..., 13 ability of
sound sensing. The capacity heterogeneity of this MRS
15 0.061.

Member robots use dead reckomng and magnetic
navigation as the main navigation technology. There is a
raster map of workplace in each robot, shown as Fig. 3.
The thin lines are magnetic stripes underground which
will guide robots moving on right routine. The points of
A, B, C, D are four charging dock for robots. The robots
will go back to their charging dock when they are free.
There are some cross symbol in Fig. 3, they are RFID
stored their own mformation about coordinates which can
help robots position themselves precisely.

When two robots meet, they use the method of
traffic rules to avoid collision. When it closes to a device,
the robot extracts the features of the device using SURF
algorithm and matches with features of target stored in
system, as shown in Fig. 4 shown. If the matching is
successful, the robot can obtain the relative position with
the target. The working scene of robots 1s shown in
Fig. 5.
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Fig. 2: Member robots
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Fig. 4: Matching target based on SURF
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Fig. & Dependencies among tasks

Currently, The MRS provide three type of inspection,
they are thermal distribution td, electric spark spk and
noise of device dn Task t, needs a robot satisfy the
capability constraint %, = Ko Ak Ak nky, task tg,
needs task  ty,

i = Koo A K kub] o kspk ? needs

loc
Ly = Koow A Ko n Ky n k- Dependencies among tasks are
shown in Fig. 6.

We subdivide mspection task of a device, 1.e. each
item detection of a device 1s seen as a subtask. Then, as
shown in Fig. 3, to detect the 17 devices, there are 51
subtasks. This solution is flexible and customizable.

Coalition agent launches the bidding process. The
value of utility computed using Eq. 14:

max(l)
A

u(t) = o o time(op, ) (14)

where, 1 13 the distance between a pomt on magnetic
stripes and target device. max(l) 1s the maximum distance.
v is average velocity of robots, time(op,) is the time need
to take to complete the detection operation op, « is a
discount factor, if utility is only depend on time, then
¢ =1

The cost a robot to executed subtask t is computed
using Eq. 15:

520 1

New algorithm

———- Vig and Adams

510
500 1
490

~
480

Used Time (S)

470

460 -

450

440 T T T T
0 5 10 15 20 25 30 35 40 45 50

Number of Trials

Fig. 7: Comparison of time taken of completing task

Table 1: Comparison of average value of maximum fitness A:B

1Y
[R] 6 30 50
5 0.8987:1.9696 0.8196:1.9760 0.8024:1.9819
6 1.2859:1.9665 0.7983:1.9536 0.8071:1.9730
7 1.3104:1.9674 0.7953:1.9626 0.7842:1.9704
8 1.3947:1.9693 0.1224:1.9679 0.8042:1.9626
lir,d) .
c(r.t)= OL(M + time(op, ) (15)
v

where, 1(r, d) i1s the actual distance between robot and
target device.

Member robots evaluate subtasks and submit bids
reference to algorithm 2. Coalition agent completes the
task allocation process using algorithm 1. Since cei-1 can
execute noise detection and thermal distribution detection
of devices, 1t bids for the task that to detect the nearest
device which lead to 3 times bidding, sent 9 times
message.

When the member robots assigned subtasks are
ready, coalition agent will 1ssue command of start.
Coalition agent start subtasks t, firstly. After received
completion messages from robots, it will start t,,. t.,. This
process is managed by coalition agent.

Table 1 showed the comparison of average value of
maximum fitness. A is the average value of maximum
fitness after algorithm 1 used Eq. 13 while B 1s the value
before uses Eq. 13. It can be found that after handled the
average value of maximum fitness is less than before
which means there are multiple subtasks assigned to a
same robot. This can make subtasks distribute among
robots evenly.

We studied a particular mspection task can be
decomposed mto 17 subtasks. Figure 7 showed the
comparison of time used to complete task by our new
algorithm and Vig and Adams. After 50 times execution, it
is obvious that the new algorithm talken less time than
Vig and Adams.
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Fig. 9: Comparison of compute complexity A

Table 2: Communication times

Message type SR task MR task
Announce |R| {1+ B
2
Bid IR| {1+ K]
2
Assign |R] |R|
Confirm |R] |R]
Total 4|R] (| T|+D|T|+2[R]

To verify the performance of the new algorithm when
robots and subtasks increased, we put some virtual
robots and subtasks in the network. Figure & showed the
relationship among commumcation times, number of
robots and subtasks.
proportional to the latter two as shown m Table 2, where
|R| is the number of robots in coalition, |T| 1s the number
of subtasks in task T.

The commumnication tiumnes 1s

35510

New algorithm
----- Vig and Adams

0(+)

Fig. 10: Comparison of compute complexity B

The step 2 of algorithm 1 uses GA to obtain option
sclution. The compute complex of algerithm 1 is O(n®)
which is increased since to fitness of each individual
needs to be post processed, where n = max(|T|, m, n), m
is the value of iteration times, n is number of individuals
in population.

In algorithm 2, the evaluation of each member
whether suitable to complete each task is optimized by
distributed computing. In this process, the complexity of
the algorithm 1s reduced via pruming strategy. The
complexity of algerithm 2 is O(n®), where n =max({|R|, |T|).

The overall compute complexity of the algorithm we
provide is O(n*) while ASyMTRe-D is O(|R!|). Vig and
Adams algorithm is O(|R|*), where, k is the maximum size
of coalition. The comparisons of compute complex of the
three algorithms are shown in Fig. 9 and 10. The complex
of the new algorithm is lower than the other algorithms
even k<5, When the value of n increases, the advantage
of the new algorithm 1s particularly obvious. Whenn>10,
the complex of ASyMTRe-D 15 too high to show in one
figure with others. Figure 10 is another comparison
between the new algorithm and Vig and Adams algorithm
when 0znz50.

It 1s not enough only using net gain to analyze the
effectiveness of a MRTA algorithm, because the net gains
of different tasks are not comparable. The net gains need
to be normalized using Eq. 16:

> e
q '(T) _ =D, teT (1 6)
2ut

where, T 1s the set of subtasks that MRTA task
decomposed. R = ¢(t) 13 a mapping T—Z which represent

1520



Inform. Technol J., 13 (8): 1514-1522, 2014

1.0 70 New Algotithm
0948 Vig and Adams

0.8 1
0.7 4
0.6 4
0.5
0.4

Performance
|
]

0.3
0.2 4
0.1+

0.0
5 10 15 20 25

IT|
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Fig. 12:Performance comparison of algorithms when
No. of robots changed

a specific subtask assignment. q'c(-e=, 1), ' = 0, means
that the cost of coalition completing the MRTA task 1s
equals to value of utility and net gain is 0. Tf the utility and
cost are computed using Eq. 15 and 16, the value of ¢
closer to 1 means the quicker of task being completed.

Figure 11 1s performance comparison of algorithims
when number of subtasks changed while Fig. 12 is
performance comparison of algorithms when number of
robots changed. Tt can be found that the new algorithm
has a great advantage not only on performance but also
on allocation speed when number of robots or subtasks
reaches a certain size.

CONCLUSION

This study studied the formation of robot coalition
and ST-MR-TA task allocation algorithm under

heterogeneous capabilities condition. We give the
concept of capability heterogeneity. We provide a new
multi-robot task allocation algorithm, whose complexity
being simplified by distributed computing and pruning
strategy. The total compute complex is O(n*). The
relationship of commumication times with number of
robots and subtasks is  (|T|+1)|T|+2|R|. The
effectiveness of this new algorithm i1s verified in
practice.
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