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Abstract: As the disadvantages of the conventional ant colony optimization, such as convergence speed and

local optimal value, an improved multi-agent ant colony optimization for reactive power optimization method
18 proposed. The improved sort-weighted ant colony optimization 1s combined with multi-agent system to

unprove convergence speed and calculation accuracy and to avoid falling into local optimal value effectively.
Improved algorithm is applied to reactive power optimization in TEEE 30-node systems, the simulation results

verify the validity of the algorithm.
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INTRODUCTION

Reactive power optimization which searches the
optimal solution in the given constraint situation, plays an
important role in power quality, network loss and voltage
stability. Scholars have introduced the ntelligent
optimization algorithm to the field of reactive power
optimization to overcome the shortcomings of classic
algorithms in recent decades. Evolutionary Programming
(EP) which opened up the process of intelligent
optimization algorithm was first proposed by L.J. Fogel
ect. Evolutionary Strategies (ES) and Genetic Algorithm
(GA) presented in 1970s promoted the further
development of intelligent algorithm. Tn 1995, Differential
Evolution Algorithm (DE) was discussed by R. Storm and
K. Price and at the same time, another branch of mtelligent
algorithm-swarm intelligent algorithm, especially Ant
Colony Optimization (ACO) and Particle Swarm
Optimization (PSO) (Zhang, 2011) are applied widely.
Although different optimization algorithms are put
forward, they have different scope of application. ACO

has no  systemic mathematical foundation and
analysis methods and the disadvantages such as
complex calculation, local optimal value, slowly

convergence. Much improvement has been done for
ACO. For example, ACO (Tan, 2012) based on chaos
theory the ergodicity of chaotic search
and avoids to fall into local optimal wvalue, ACO
combined with TImmune Algorithm (Bao and Yang,

utilizes

2007) to improve single search mechamsm  which

enhances global search ability at the expense of the
operation time.

A method integrates  Multi-Agent.
(MAS) with improved ACO to
optimal value and increase convergence speed is
discussed in the study which can achieve fast and
accurate optimization.

System
overcome local

MODEL OF REACTIVE POWER OPTIMIZATION

The mathematical model of reactive power
optimization consists of objective function and constraint
conditions. The constraint conditions include equality
constraints and inequality constraints.

Several constramts such as network loss, voltage
quality, reactive compensation capacity and economic
benefits ect., should be considered to establish reactive
power optimization objective function. Considering these
factors comprehensively, the objective function is as

follows:

minF:miniGlJI:uleruf—2u‘ujcos(6J—Bx)J (1)

k=l

where, F 1s distribution electric energy loss, n 1is the
total mumber of branch; G; is conductance on the i-]
branch; &, 8, respectively stand for phase angles of
node; and nede ; uu, stand for voltages of node, and
node,.

As the power flow calculation 13 used to not only
test the results of optimization but also is the main
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component of calculation program in some optimization
algorithm, so the power flow equations are treated as
equality constraint conditions, it can be expressed as
follows:

B - U,le U, (G, cosd, + By sind )= 0 ©

Q- U)Z“: U, (G, dnd; - B, cosd;)=0

=

where, P,and Q; are the injected active power and reactive
power of node, separately; U, and U; stand for voltages of
node ; and nede ;; Gy and B; are real part and imaginary
part of element in the *row and the j* column in system
node admittance matrix.

The reactive power of generator, compensation
capacity of reactive power compensation devices and
variable ratio of on-load tap changer are selected as
controlling variables. Voltages of load node are selected
as state variables.

The inequality constraints of control variable are:

QGm'un g QGI g QGm'\ax
Qe < Qs < s 3)
T, <T<T,,

The mequality constramts of state variable are:
u <u, =u (4)

where, Qg is reactive power of node, generator; Qg and
Qgimin are upper and lower limit of Qg Qg 1s the
compensation capacity of the i* reactive power
compensation device; upper and lower limit of Qg are
Qi a0d Qs T, 18 variable ratio of the 1* on-load
tap changer; T,... and T, are upper and lower limit of T ;
Uy, and v, . are upper and lower limit of u, voltage of

node;.
MULTI-AGENT Ant COLONY OPTIMIZATION

Conventional ant colony optimization: Ant Colony
Optimization (ACO) is a new simulated evolutionary
algorithm which simulates real ants foraging behavior in
the nature. But the difference with real ant system 1s ACO
has memory function (Shi, 2008) by exchanging message
and cooperation among ants which can get the optimal
value of optimized problem which can be equivalent to the
shortest path of real ant foraging from the nest to food
source.

Traveling salesman problem (TSP) is taken as an
example to explain the basic principle of ACO. Initial
parameters m 1s the number of ants,n is the scale
of the city, the distance between city, and city,
18 d; (1,) = 1,2....n), the concentration of pheromene that 1s
between the path of city, and city, at t moment is T, Ant
k (k=1,2....,m) decides to visit next city according to the
concentration of the pheromone between two cities. P,
is probability of ant k from city, to city ;at t moment, the
expression is:

[TlJ (t)]m * [H‘J (t)] ) se allow,
7= {3 207 ] ©
0, se allow,

where,m; (t) is enlightening function, its value is 1/d,
and stands for the expectation from city, to city,
allow, expresses set of cities which will be visited by ant
k and reduces from n-1 to 0 as time goes on.
Pheromone enlightening factor 18 o and self-
enlightening factor is . The greater the value that is
defined between « and [}, the greater transfer fimction
between two cities 1s.

The pheromone among the path of different cities,
also gradually disappears when the ants
pheromone. P is defined as volatile coefficient (O<P<1),
then real-time concentration of pheromone among the
path of cities can be updated when all ants complete the

cycle:

release

Tt +1) =pH, (1) +Ar, (&)

Aty = ; A‘E: (7)

At‘]; _ {Q,"Lk; ifant k pas.s the path (i, j) (8)
0; otherwise

where, the increment of pheromone concentration on the
searching path (1j) of ant k isAt¥,; the sum of pheromone
concentration on the searching route (1.j) of all ants is At;
Q 1s constant and it 1s amount of pheromoene which 1s
released by ant after circulation; L,is the length of route
that 13 passed by ant k.

The basic process of ACO is shown in Fig. 1.

Improved ant colony optimization: Some scholars
introduced the concept of sorting of GA into ACO
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Fig. 1: Basic process of ACO

(Ren, 2006) which improved the algorithm convergence
speed in TSP. Based on the thought, the weight
coefficient of ACO 1s adjusted and applied to reactive
power optimization to solve convergence speed.

The main idea of improved algorithm is as follows.
The paths which are obtained at the end of one ant
optimal circulation are sorted according to the length. An

Current iteration No. add 1 N
and empty path form
Max No.
of iterations
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Convergence curve
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ant’s contribution of updating pheromone depends on the
length of the path. The shorter circulation generates the
path, the greater contribution is made by ants to
pheromone. The rules of pheromone updating are
modified by adding a weighted coefficient A*(1-N/N,_.).
All the ants have corresponding contribution for global
pheromone updating, where the better ants are placed a
high value and the effect of worse ants 13 also weakened
during the process of optimization.

In improved algorithm, the path and the global
pheromone are updated according to the equation:

At = A(-N/N_YQ/L,; if ant k pass the route(i, j}in this cycle (9)
g 0 ; otherwize

where, Ais a constant, 0<A<l; Q is also a constant
expressing the amount of pheromone which 1s released by
ant after circulation; k 1s the No. of optimal ants; L, 1s the
length of route that i1s passed by ant k; N and N, are
respectively cwrent iteration No. and the maximum
iteration No.

When the initial parameters is same, the results of
common ACO and improved ACO are shown in Fig. 2.

The advantages of improved ACO over conventional
ACO can be summarized from Fig. 2 as follows:

¢ The improved ACO is able to achieve global optimal
value faster than conventional ACO, while satisfying
all the power systemn operation constraints and
convergence conditions

*  Searching curve of improved ACO is more smooth

*  The improved ACO avoids trapping in local optimal
value

No. of iteration

Fig. 2: Comparing results of common ACO and improved
ACO
Agent, , Agent,, | e e Agent, ¢
Agent,, Agent,, | e | e Agent, g
Agent,, Agentg, | e | Agent,

Fig. 3: Grid structure of agent

Multi-agent Ant colony (MAS) optimization: Multiple-
Agent system can solve complex optimal problem by
collaborating of each agent. The Agent modules having
different functions complete coordinately the task
through communication and cooperation with greater
flexibility and adaptability (Dagdeviren et al., 2011).

Multi-Agent Ant Colony Optimization (MACO) has
multiple characters which combine MAS with improved
ACO. Any Agent is equivalent to an ant in ACO and it
also has a best adaptive value which is decided by
optimization.

Agent environment: The swvival environment of agent
can be simplified to a grid structure in constrained
condition. Agent must carry pheromone n ACO and has
corresponding response. “Grid” structure 1s demonstrated
n Fig. 3, S stands for the size of grid structure and S*S 15
ant colony scale.
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Agent,
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Agent,.,;

Fig. 4: Local environment of non-boundary agent
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Fig. 5: Local environment of boundary agent

Local
operations: Every agent competes and cooperates with its
neighbors, then takes comresponding action strategies
independently combined with ant colony searching. Thus,

environment and competitive-cooperative

the local environment of Agent 1s sigmficant (Zhao and
Cao, 2005). For the non-boundary Agent;;, its neighbors
are shown in

Figure 4 and can be expressed as:

Neighbor ; = {Agent, Agent, . Agent, ., } (1 0)

=L,

Agent, .
where, 1and j are both positive mteger and I, j (1,2,3...,3)
For boundary Agent, namely i,) =1 or 5. Tts neighbors are
shown in Fig. 5. The value of row index:

{i1=Si2=i+l; wheni=1 (11)

i,=1i,=i-1; wheni=35
In the same way, the value of column index:

ji=Sj,=j+1; whenj=1 (12)
jz=lij=j-1; whenj=38

Agents are enlightened by pheromone which is left
by ants and cooperate and compete with their neighbors.
The agent with optimal adaptive value keeps its original
location, then exchanges pheromone to all ants at the
same time. This algorithm increases the speed of transfer
and can search the global optimal solution quickly.

Self-iearning operation: Self learning operation search in
small scope and don’t introduce ant colony searching
mechanism. Self-learming operation is only used to optimal
agent to enhance searching speed effectively.

Optimizing steps of MACOQO: The steps of the improved
algorithm 13 as follows:

s Step 1: Set the upper and lower liunit of mitial
parameters and constraints and define the specified
control parameters and the maximum number of
iterations in the algorithm

s Step 2: Create the Agent “swvival” environment,
“grid” structure and imitial Agent, the imtial number
of iteration is O

s Step 3: Evaluate the adaptive value of each Agent
by Newton-Raphson power flow algorithm

s Step 4: Every agent and its neighbors are
competitive and cooperative, then updating Agents
in the whole environment

s Step 5: Canry out the improved ACO i the MAS and
update position of each Agent in the solution space
for the second time afterwards

s Step 6: Evaluate the adaptive value of Agent again;

s Step 7: Search the optimal adaptive value of Agent,
(search the mimmum network loss value m this
article) and update the location of Agent in the
solution space for the third time according to
self-learning operation of Agent

s Step 8: times of iteration add 1

s Step 9: Judge whether the termination conditions 1s
reached, that is, maximum number of iterations or
conwvergence condition;, if not, junp to Step 3.
Otherwise, terminate the iterations and output the
optimal value of optimization

EXAMPLE ANALYSIS

The improved algorithm is applied to TEEE 30-node
system (Liu, 2010) analysis to verify the feasibility and
validity. TEEE 30-node system is shown in Fig. 6.

The power reference in the system is 5, = 100MVA.
There are 6 generators, 38 branches, 4 transformers, 9 sets
of parallel capacitor and 21 load nodes. The total load
active power 18 P, = 2.834 and reactive power 1s
Quua =1.262. Parameters are set in Table 1 and 2.

In the imitial conditions, Y Py and Y Q; are 2.8691 and
1.3807 respectively by power flow calculation. Network
loss is Py, which equal to 0.035. The initial parameters of
the mnproved algorithm are set as follows. Total
environment size is S =10, namely, ant population scale
15 100, the largest number of iterations s N, .= 50,
pheromone enlightening factor is ¢ = 1, self-enlightening
factor is = 2, volatile coefficient is P = 0.1, weighting
coefficient 15 A = 0.3, self-learmng environment size
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Table 1: Generator parameters CONCLUSION
Veriables Qu Qs Qas Qaz Qo Qus  Voltage
Lower limit -0.20 -0.20 -015 -015 -0.10 -0.15 0.9

Upper limit _ 0.60  0.60  0.63 050 040 045 1.1

Table 2: Transfonmer ratio parameters

The reactive power optimization is a important
technique to ensure power system running safely and
economically. An mmproved multi-agent ant colony

Head node End node Tnitial value Location Upper limit  Tower limit algorithm is discussed to realize reactive power
6 ° 1.023 o L1 09 optimization which overcomes the disadvantage of slow
6 10 0.975 6 11 0.9 P vere _ 8e o
4 12 LO00 12 L1 0.9 convergence and falling into local optimal solution by
28 27 0.950 28 11 0.9 modifying  the pheromone weight The mmproved
Table 3 Contrast s of ootirmizat algorithm 1s combined with multi-agent system and
able 5. Contrastive resulls of opturnization .
E applied to TEEE-30 node system, the results demonstrate
Balance bus power )

Network  DESCEMt  woommmmmmemmmeemmemee that the computation speed and accuracy are all
Algorithm  loss rate (%)  Active  Reactive Run-time (sec) increased.
Initial 0.035 — 0.308 0.352 —
GA 0.023 =34.29 0.294 0.289 38.9
MACO 0.017 =51.43 (.288 0.221 36.5 ACKNOWLEDGMENTS

is 8 = 4, searching radius of self-learning sR = 0.4. The
comparison result of MACO and GA in the same initial
conditions 1s demonstrated in Table 3.

In Table 3, the power network is optimized by MACO,
network loss 15 0.017 which 1s much less than GA
Compared with GA, there is a 17%
and the
computing time 1s shorter. By means of power flow
calculation, the reactive power of balance bus
become much less than before. The results fully show
of MACO by  taking
condition and the of optimization into

and initial.
loss descent rate

mcrease i  network

effectiveness EConoImic
result

consideration.
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